材料学高分子精简_第1页
材料学高分子精简_第2页
材料学高分子精简_第3页
材料学高分子精简_第4页
材料学高分子精简_第5页
已阅读5页,还剩83页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、材料学高分子精简第1页,共88页,2022年,5月20日,22点8分,星期四本章内容复合材料概述复合材料分类复合材料的基体复合材料的增强相复合材料的复合原理(key point)复合材料的成型工艺第2页,共88页,2022年,5月20日,22点8分,星期四(一) 复合材料概述三大材料:金属无机非金属有机高分子复合材料取长补短协同作用产生原来单一材料本身所没有的新性能无机非金属材料有机高分子材料金属材料复合材料第3页,共88页,2022年,5月20日,22点8分,星期四、复合材料的定义 什么是复合材料 (Composition Materials , Composite) ? 要给复合材料下一个

2、严格精确而又统一的定义是很困难的。概括前人的观点,有关复合材料的定义或偏重于考虑复合后材料的性能,或偏重于考虑复合材料的结构 。 第4页,共88页,2022年,5月20日,22点8分,星期四 复合材料的特点:1、复合材料的组分和相对含量是由人工选择和设计的;2、复合材料是以人工制造而非天然形成的(区别于具有某些复合材料形态特征的天然物质);3、组成复合材料的某些组分在复合后仍然保持其固有的物理和化学性质(区别于化合物和合金);4、复合材料的性能取决于各组成相性能的协同。复合材料具有新的、独特的和可用的性能,这种性能是单个组分材料性能所不及或不同的;5、复合材料是各组分之间被明显界面区分的多相材

3、料。第5页,共88页,2022年,5月20日,22点8分,星期四基体、增强材料、界面(key point)Matrix , Reinforcement, Interface基体连续相增强材料分散相也称为增强体、增强剂、增强相等显著增强材料的性能多数情况下,分散相较基体硬,刚度和强度较基体大。可以是纤维及其编织物,也可以是颗粒状或弥散的填料。在基体和增强体之间存在着界面。第6页,共88页,2022年,5月20日,22点8分,星期四Schematic illustration of composite constituents第7页,共88页,2022年,5月20日,22点8分,星期四(二)复合材

4、料的分类按增强材料形态分类1、纤维增强复合材料: a.连续纤维复合材料:作为分散相的长纤维的两个端点都位于复合材料的边界处; b.非连续纤维复合材料:短纤维、晶须无规则地分散在基体材料中;2、颗粒增强复合材料:微小颗粒状增强材料分散在基体中;3、板状增强体、编织复合材料:以平面二维或立体三维物为增强材料与基体复合而成。其他增强体:层叠、骨架、涂层、片状、天然增强体 第8页,共88页,2022年,5月20日,22点8分,星期四纤维增强复合材料种类 玻璃纤维复合材料; 碳纤维复合材料; 有机纤维(芳香族聚酰胺纤维、芳香族聚酯纤维、聚烯烃纤维等)复合材料; 金属纤维(如钨丝、不锈钢丝等)复合材料;

5、陶瓷纤维(如氧化铝纤维、碳化硅纤维等)复合材料。混杂复合材料:两种或两种以上增强体与同一基体制成的复合材料可以看成是两种或多种单一纤维或颗粒复合材料的相互复合,即复合材料的“复合材料”。第9页,共88页,2022年,5月20日,22点8分,星期四按基体材料分类 聚合物基复合材料:以有机聚合物(热固性树脂、热塑性树脂及橡胶等)为基体; 金属基复合材料:以金属(铝、镁、钛等)为基体; 无机非金属基复合材料:以陶瓷材料(也包括玻璃和水泥)为基体。第10页,共88页,2022年,5月20日,22点8分,星期四按材料作用分类 结构复合材料:用于制造受力构件; 功能复合材料:具备各种特殊性能(如阻尼、导电

6、、导磁、摩擦、屏蔽等)。同质复合材料(增强材料和基体材料属于同种物质,如碳/碳复合材料)异质复合材料(复合材料多属此类)。第11页,共88页,2022年,5月20日,22点8分,星期四复合材料系统组合分散相连续相金属材料无机非金属材料有机高分子材料金属材料金属纤维纤维/金属基复合材料钢丝/水泥复合材料增强橡胶金属晶须晶须/金属基复合材料晶须/陶瓷基复合材料金属片材金属/塑料板无机非金属材料陶瓷纤维纤维/金属基复合材料纤维/陶瓷基复合材料晶须晶须/金属基复合材料晶须/陶瓷基复合材料颗粒弥散强化合金材料粒子填充塑料玻璃纤维纤维/树脂基复合材料颗粒碳纤维碳纤维/金属基复合材料碳纤维/陶瓷基复合材料碳

7、纤维/树脂基复合材料炭黑颗粒/橡胶;颗粒/树脂基有机高分子材料有机纤维纤维/树脂基复合材料塑料金属/塑料橡胶第12页,共88页,2022年,5月20日,22点8分,星期四各种材料的发展状况玻璃钢和树脂基复合材料 非常成熟 广泛的应用 金属基复合材料 开发阶段 某些结构件的关键部位 陶瓷基复合材料及功能复合材料等 有不少科学技术问题有待解决第13页,共88页,2022年,5月20日,22点8分,星期四复合材料的设计从常规设计向仿生设计发展仿照竹子从表皮到内层纤维由密排到疏松的特点,成功地制备出具有明显组织梯度与性能梯度的新型钢基耐磨梯度复合材料。仿照鲍鱼壳的结构,西雅图华盛顿大学的研究人员利用由

8、碳、铝和硼混合成陶瓷细带制成了10微米厚的薄层,由此得到的层状复合材料比其原材料坚固40。仿照骨骼的组织特点,人们制造了类似结构的风力发电机和直升飞机的旋翼,外层是刚度、强度高的碳纤维复合材料,中层是玻璃纤维增强复合材料、内层是硬泡沫塑料。第14页,共88页,2022年,5月20日,22点8分,星期四(三) 复合材料的基体材料 基体材料金属材料陶瓷材料聚合物材料第15页,共88页,2022年,5月20日,22点8分,星期四3.1 金属基体材料(key point)3.1.1 选择基体的原则目前用作金属基复合材料的金属有铝及铝合金、镁合金、钛合金、镍合金、铜与铜合金、锌合金、铅、钛铝、镍铝金属间

9、化合物等。基体材料成分的选择对能否充分组合和发挥基体金属和增强物性能特点,获得预期的优异综合性能,满足使用要求十分重要。 第16页,共88页,2022年,5月20日,22点8分,星期四 金属基复合材料的使用要求金属基复合材料构件的使用性能要求是选择金属基体材料最重要的依据。在航天、航空技术中高比强度和比模量以及尺寸稳定性是最重要的性能要求。作为飞行器和卫星的构件宜选用密度小的轻金属合金镁合金和铝合金作为基体,与高强度、高模量的石墨纤维、硼纤维等组成石墨/镁、石墨/铝、硼/铝复合材料。第17页,共88页,2022年,5月20日,22点8分,星期四Some properties of commer

10、cially pure metals第18页,共88页,2022年,5月20日,22点8分,星期四高性能发动机:要求复合材料不仅有高比强度和比模量,还要具有优良的耐高温性能,能在高温、氧化性气氛中正常工作。此时不宜选用一般的铝、镁合金,而应选择钛合金、镍合金以及金属间化合物作为基体材料。如碳化硅/钛、钨丝/镍基超合金复合材料可用于喷气发动机叶片、转轴等重要零件。在汽车发动机中要求其零件耐热、耐磨、导热、一定的高温强度等,同时又要求成本低廉,适合于批量生产,因此选用铝合金作基体材料与陶瓷颗粒、短纤维组成颗粒(短纤维)/铝基复合材料。如碳化硅/铝复合材料、碳纤维或氧化铝纤维/铝复合材料可制作发动机

11、活塞、缸套等零件。第19页,共88页,2022年,5月20日,22点8分,星期四工业集成电路需要高导热、低膨胀的金属基复合材料作为散热元件和基板。选用具有高导热率的银、铜、铝等金属为基体与高导热性、低热膨胀的超高模量石墨纤维、金刚石纤维、碳化硅颗粒复合成具有低热膨胀系数和高导热率、高比强度、高比模量等性能的金属基复合材料,可能成为解决高集成电子器件的关键材料。第20页,共88页,2022年,5月20日,22点8分,星期四 金属基复合材料组成特点连续纤维增强金属基复合材料,纤维是主要承载物体. 纤维本身具有很高的强度和模量,而金属基体的强度和模量远远低于纤维。连续纤维增强金属基复合材料中基体的主

12、要作用应是以充分发挥增强纤维的性能为主,基体本身应与纤维有良好的相容性和塑性,而并不要求基体本身有很高的强度。 第21页,共88页,2022年,5月20日,22点8分,星期四如碳纤维增强铝基复合材料中纯铝或含有少量合金元素的铝合金作为基体比高强度铝合金要好得多,使用后者制成的复合材料的性能反而低。 在研究碳铝复合材料基体合金优化过程中,发现铝合金的强度越高,复合材料的性能越低,这与基体和纤维的界面状态、脆性相的存在、基体本身的塑性有关。第22页,共88页,2022年,5月20日,22点8分,星期四对于非连续增强(颗粒、晶须、短纤维)金属基复合材料,基体是主要承载物,基体的强度对复合材料具有决定

13、性的影响。因此要获得高性能金属基复合材料必须选用高强度铝合金作为基体,这与连续纤维增强金属基复合材料基体的选择完全不同。如颗粒增强铝基复合材料一般选用高强度铝合金(如A365,6061,7075)为基体。第23页,共88页,2022年,5月20日,22点8分,星期四 基体金属与增强物的相容性 金属基复合材料需要在高温下成型,制备过程中,处于高温热力学非平衡状态下的纤维与金属之间很容易发生化学反应,在界面形成反应层。界面反应层大多是脆性的,当反应层达到一定厚度后,材料受力时将会因界面层的断裂伸长小而产生裂纹,并向周围纤维扩展,容易引起纤维断裂,导致复合材料整体破坏。 第24页,共88页,2022

14、年,5月20日,22点8分,星期四因此,选择基体时应充分注意与增强物的相容性(特别是化学相容性),并尽可能在复合材料成型过程中抑制界面反应。例如,对增强纤维进行表面处理 在金属基体中添加其他成分 选择适宜的成型方法 缩短材料在高温下的停留时间等。 第25页,共88页,2022年,5月20日,22点8分,星期四3.1.2 结构复合材料的基体分为轻金属基体和耐热合金基体 用于450以下的轻金属基体目前最广泛、最成熟的是铝基和镁基复合材料,用于航天飞机、人造卫星、空间站、汽车发动机零件、刹车盘等 用于450700的复合材料的金属基体钛合金具有比重轻、耐腐蚀、耐氧化、强度高等特点,可在450700使用

15、,用于航空发动机等零件。 用于1000以上的高温复合材料的金属基体基体主要是镍基、铁基耐热合金和金属间化合物。较成熟的是镍基、铁基高温合金,金属间化合物基复合材料尚处于研究阶段。 第26页,共88页,2022年,5月20日,22点8分,星期四3.1.3 功能用金属基复合材料的基体要求材料和器件具有优良的综合物理性能,如同时具有高力学性能、高导热、低热膨胀、高导电率、高抗电弧烧蚀性、高摩擦系数和耐磨性等。单靠金属与合金难以具有优良的综合物理性能,而要靠优化设计和先进制造技术将金属与增强物做成复合材料来满足需求。主要的金属基体是纯铝及铝合金、纯铜及铜合金、银、铅、锌等金属。第27页,共88页,20

16、22年,5月20日,22点8分,星期四微电子技术的电子封装集成电路:需用热膨胀系数小、导热性好的材料做基板和封装零件,以便将热量迅速传走,避免产生热应力,来提高器件可靠性。用于电子封装的金属基复合材料有:高碳化硅颗粒含量的铝基、铜基复合材料,高模、超高模石墨纤维增强铝基、铜基复合材料,金刚石颗粒或多晶金刚石纤维增强铝基、铜基复合材料,硼/铝基复合材料等第28页,共88页,2022年,5月20日,22点8分,星期四耐高温摩擦的耐磨材料碳化硅、氧化铝、石墨颗粒、晶须、纤维等增强铝、镁、铜、锌、铅等金属及其合金的金属基复合材料。高导热和耐电弧烧蚀的集电材料和触头材料碳(石墨)纤维、金属丝、陶瓷颗粒增

17、强铝、铜、银及合金等金属基复合材料。耐腐蚀的电池极板材料等第29页,共88页,2022年,5月20日,22点8分,星期四3.2 陶瓷基体(供了解)在陶瓷基体中添加其他成分(如陶瓷粒子、纤维或晶须)可提高陶瓷的韧性。粒子增强虽能使陶瓷的韧性有所提高,但效果并不显著。高强度的碳化硅晶须容易掺混在陶瓷基体中,增强陶瓷的作用明显。用作基体材料的陶瓷一般应具有优异的耐高温性质、与纤维或晶须之间有良好的界面相容性以及较好的工艺性能等。第30页,共88页,2022年,5月20日,22点8分,星期四陶瓷基复合材料(CMC) 第31页,共88页,2022年,5月20日,22点8分,星期四3.3 聚合物基体(供了

18、解) 9.3.3.1 聚合物基体的种类不饱和聚酯树脂、环氧树脂、酚醛树脂及各种热塑性聚合物等。 不饱和聚酯树脂是制造玻璃纤维复合材料的一种重要树脂。在国外,聚酯树脂占玻璃纤维复合材料用树脂总量的80%以上。第32页,共88页,2022年,5月20日,22点8分,星期四聚酯树脂特点:工艺性良好,室温下固化,常压下成型,工艺装置简单。树脂固化后综合性能良好,力学性能不如酚醛树脂或环氧树脂。价格比环氧树脂低得多,只比酚醛树脂略贵一些。不饱和聚酯树脂的缺点是固化时体积收缩率大、耐热性差等。主要用于一般民用工业和生活用品中第33页,共88页,2022年,5月20日,22点8分,星期四 邻苯型不饱和聚酯:

19、间苯型不饱和聚酯:双酚型不饱和聚酯:第34页,共88页,2022年,5月20日,22点8分,星期四环氧树脂特点:在加热条件下即能固化,无须添加固化剂。 酸、碱对固化反应起促进作用;已固化的树脂有良好的压缩性能,良好的耐水、耐化学介质和耐烧蚀性能;树脂固化过程中有小分子析出,故需在高压下进行;固化时体积收缩率大,树脂对纤维的粘附性不够好,但断裂延伸率低,脆性大。第35页,共88页,2022年,5月20日,22点8分,星期四 双酚型环氧树脂:酚醛环氧树脂:第36页,共88页,2022年,5月20日,22点8分,星期四酚醛树脂优点:比环氧树脂价格便宜缺点:吸附性不好、收缩率高、成型压力高、制品空隙含

20、量高等。大量用于粉状压塑料、短纤维增强塑料,少量用于玻璃纤维复合材料、耐烧蚀材料等,很少使用在碳纤维和有机纤维复合材料中。第37页,共88页,2022年,5月20日,22点8分,星期四3.3.2 聚合物基体的作用(供了解)把纤维粘在一起;分配纤维间的载荷;保护纤维不受环境影响。用作基体的理想材料,其原始状态应该是低粘度的液体,并能迅速变成坚固耐久的固体,足以把增强纤维粘住。尽管纤维增强材料的作用是承受载荷,但是基体材料的力学性能会明显地影响纤维的工作方式及其效率。 第38页,共88页,2022年,5月20日,22点8分,星期四例如,在没有基体的纤维束中大部分载荷由最直的纤维承受,基体使得应力较

21、均匀地分配给所有纤维,这是由于基体使所有纤维经受同样的应变,应力通过剪切过程传递,这要求纤维和基体之间有高的胶接强度,同时要求基体本身也具有高的剪切强度和模量。当载荷主要由纤维承受时,复合材料总的延伸率受到纤维的破坏延伸率的限制,这通常为1%1.5%。基体的主要性能是在这个应变水平下不应该裂开。在纤维的垂直方向,基体的力学性能和纤维与基体之间的胶接强度控制着复合材料的物理性能。由于基体比纤维弱得多,而柔性却大得多,所以在结构件设计中应尽量避免基体直接横向受载。第39页,共88页,2022年,5月20日,22点8分,星期四在高胶接强度体系(纤维间的载荷传递效率高,但断裂韧性差)与较低胶接强度体系

22、(纤维间的载荷传递效率不高,但韧性较高)之间需要折衷。在应力水平和方向不确定情况下使用或在纤维排列精度较低情况下制造的复合材料往往要求基体比较软。在明确应力水平情况下使用和在严格控制纤维排列情况下制造的先进复合材料,应通过使用高模量和高胶接强度的基体以更充分地发挥纤维的最大性能。 第40页,共88页,2022年,5月20日,22点8分,星期四(四) 复合材料的增强相(主要是供了解内容)增强材料(增强体、增强剂等)分散在基体内以改进其机械性能的高强度材料分类纤维及其织物晶须颗粒小片状、板状第41页,共88页,2022年,5月20日,22点8分,星期四Types of reinforced com

23、posites第42页,共88页,2022年,5月20日,22点8分,星期四4.1 纤维增强体天然纤维植物纤维(棉花、麻类)、动物纤维(丝、毛)和矿物纤维(石棉)。强度较低现代复合材料的增强材料用合成纤维有机纤维无机纤维。第43页,共88页,2022年,5月20日,22点8分,星期四Types of fiber reinforcement orientationone-dimensionaltwo-dimensionalthree-dimensional第44页,共88页,2022年,5月20日,22点8分,星期四1)有机纤维 芳香族酰胺纤维Aromatic Polymide Fibre, K

24、evlar, KFKEVLAR纤维第45页,共88页,2022年,5月20日,22点8分,星期四芳纶纤维的性能特点A 、芳纶纤维的力学性能; 、 芳纶纤维的热稳定性; 、芳纶纤维的化学性能。第46页,共88页,2022年,5月20日,22点8分,星期四A 、芳纶纤维的力学性能芳纶纤维的特点是拉伸强度高。单丝强度可达3773 MPa;254mm长的纤维束的拉伸强度为2744 MPa,大约为铝的5倍。芳纶纤维的冲击性能好,大约为石墨纤维的6倍,为硼纤维的3倍,为玻璃纤维0.8倍。第47页,共88页,2022年,5月20日,22点8分,星期四芳纶纤维的弹性模量高,可达1.27 1.577 MPa,比

25、玻璃纤维高一倍,为碳纤维0.8倍。芳纶纤维的断裂伸长在3左右,接近玻璃纤维,高于其他纤维。芳纶纤维与碳纤维混杂将能大大提高纤维复合材料的冲击性能。 芳纶纤维的密度小,比重为1.44 1.45,只有铝的一半。因此,它有高的比强度与比模量。第48页,共88页,2022年,5月20日,22点8分,星期四下表为芳纶纤维的基本性能第49页,共88页,2022年,5月20日,22点8分,星期四、 芳纶纤维的热稳定性芳纶纤维有良好的热稳定性,耐火而不熔,当温度达487 时尚不熔化,但开始碳化。因此,芳纶纤维在高温作用下,不发生变形,直至分解。如,能长期在180下使用;在150下作用一周后强度、模量不会下降;

26、即使在200下,一周后强度降低15,模量降低4;另外,在低温(-60)不发生脆化亦不降解。第50页,共88页,2022年,5月20日,22点8分,星期四和碳纤维一样,芳纶纤维的热膨胀系数具有各向异性的特点。如,芳纶纤维的纵向热膨胀系数在0 100时为-2 10 -6 / ;在100 200时为-4 10 6 /。横向热膨胀系数为59 10 -6 /第51页,共88页,2022年,5月20日,22点8分,星期四、芳纶纤维的化学性能 芳纶纤维具有良好的耐介质性能,对中性化学药品的抵抗力一般是很强的,但易受各种酸碱的侵蚀,尤其是强酸的侵蚀; 芳纶纤维的耐水性也不好,这是由于在分子结构中存在着极性酰氨

27、基;湿度对纤维的影响,类似于尼龙或聚酯。在低湿度(20相对湿度)下芳纶纤维的吸湿率为1,但在高湿度(85相对湿度)下,可达到7。第52页,共88页,2022年,5月20日,22点8分,星期四 聚乙烯纤维(Polyethylene, PE)目前国际上最新的超轻、高比强度、高比模量纤维,成本也比较低。通常分子量大于106,拉伸强度为3.5GPa,弹性模量为116GPa,延伸率为3.4%,密度为0.97g/cm3。具有高比强度、高比模量以及耐冲击、耐磨、自润滑、耐腐蚀、耐紫外线、耐低温、电绝缘等多种优异性能。不足之处是熔点较低(约135)和高温容易蠕变。因此仅能在100以下使用,可用于制做武器装甲、

28、防弹背心、航天航空部件等第53页,共88页,2022年,5月20日,22点8分,星期四2)无机纤维 玻璃纤维(Glass Fibre, GF或Gt)由含有各种金属氧化物的硅酸盐类,经熔融后以极快的速度抽丝而成。由于质地柔软,因此可以纺织成各种玻璃布、玻璃带等织物。价格便宜,品种多,适于编织各种玻璃布,作为增强材料广泛用于航空航天、建筑领域及日常用品。缺点是不耐磨,易折断,易受机械损伤,长期放置强度下降。第54页,共88页,2022年,5月20日,22点8分,星期四Example无捻玻璃纤维 55第55页,共88页,2022年,5月20日,22点8分,星期四种类:按用途高强度纤维、低介电纤维、耐

29、化学药品纤维、耐电腐蚀纤维、耐碱纤维;按化学成分碱玻璃纤维、中碱玻璃纤维、低碱玻璃纤维、无碱玻璃纤维;按单丝直径可分为:粗纤维、初级纤维、中级纤维、高级纤维。第56页,共88页,2022年,5月20日,22点8分,星期四7.4.1 聚合物基玻璃钢天线反射面玻璃钢建筑材料用于上海东方明珠电视塔大堂装潢57第57页,共88页,2022年,5月20日,22点8分,星期四(1)GFRP玻璃钢应用于体育用品58第58页,共88页,2022年,5月20日,22点8分,星期四 碳纤维(Carbon Fibre, CF或Cf)(需适当关注)纤维中含碳量在95%左右的碳纤维和含碳量在99%左右的石墨纤维。生产碳

30、纤维的原料主要为人造丝(粘胶纤维)、聚丙烯腈和沥青三种,其中以聚丙烯腈最为主要。按力学性能可将碳纤维分成高强度碳纤维、高模量碳纤维和普通碳纤维。第59页,共88页,2022年,5月20日,22点8分,星期四碳纤维片材(复合材料)用于建筑物补强加固60第60页,共88页,2022年,5月20日,22点8分,星期四Pyrolysis(热解) of polyacrylonitrile (聚丙烯腈,PAN) to form carbon fibers第61页,共88页,2022年,5月20日,22点8分,星期四(2)CFRP碳纤维增强聚合物基复合材料(CFRP) CFRP在民用飞机中的应用CFRP在空

31、间站大型结构以及太阳能电池支架中的应用62第62页,共88页,2022年,5月20日,22点8分,星期四碳纤维的特点:强度和模量高、密度小;具有很好的耐酸性;热膨胀系数小,甚至为负值具有很好的耐高温蠕变性能,一般在1900以上才呈现出永久塑性变形。摩擦系数小、润滑性好、导电性高。碳纤维的缺点:价格昂贵,比玻璃纤维贵25倍以上抗氧化能力较差,在高温下有氧存在时会生成二氧化碳。第63页,共88页,2022年,5月20日,22点8分,星期四 硼纤维(Boron Fibre,BF或Bf)通用的制备方法是在加热的钨丝表面通过化学反应沉积硼层。硼纤维的直径有100m、140m、200m几种。硼纤维的特点硼

32、纤维具有很高的弹性模量和强度,但其性能受沉积条件和纤维直径的影响,硼纤维的密度为2.42.65g/cm3,拉伸强度为3.25.2GPa,弹性模量为350400GPa。硼纤维具有耐高温和耐中子辐射性能。第64页,共88页,2022年,5月20日,22点8分,星期四硼纤维的缺点工艺复杂,不易大量生产,其价格昂贵。由于钨丝的密度大,硼纤维的密度也大。目前已研究用碳纤维代替钨丝,以降低成本和密度,结果表明,碳心硼纤维比钨丝硼纤维强度下降5%,但成本降低25%。硼纤维在常温为较惰性物质,但在高温下易与金属反应,因此需在表面沉积SiC层,称之为Bosic纤维。硼纤维主要用于聚合物基和金属基复合材料。第65

33、页,共88页,2022年,5月20日,22点8分,星期四硼纤维增强铝基复合材料用于航天飞机主舱体支柱66第66页,共88页,2022年,5月20日,22点8分,星期四 氧化铝纤维Aluminia Fibre,AF多晶连续纤维,除Al2O3外常含有约15%的SiO2。优点:具有优良的耐热性和抗氧化性,直到370强度仍下降不大。缺点:在所有纤维中密度最大。用途:主要用于金属基复合材料。第67页,共88页,2022年,5月20日,22点8分,星期四 碳化硅纤维Silicon Carbide Fibre,SF目前SiC纤维的生产有有机合成法和CVD法两种。特点:高强度高模量有良好的耐化学腐蚀性、耐高温

34、和耐辐射性能。比碳纤维和硼纤维具有更好的高温稳定性。具有半导体性能。与金属相容性好,常用于金属基和陶瓷基复合材料。第68页,共88页,2022年,5月20日,22点8分,星期四- 碳化硅69第69页,共88页,2022年,5月20日,22点8分,星期四4.2 晶须增强体晶须(Wisker):具有一定长径比(一般大于10)和截面积小于5210-5cm2的单晶纤维材料。具有实用价值的晶须直径约为110m,长度与直径比在51000之间。晶须是含缺陷很少的单晶短纤维,其拉伸强度接近其纯晶体的理论强度。第70页,共88页,2022年,5月20日,22点8分,星期四分类:金属晶须(如Ni、Fe、Cu、Si

35、、Ag、Ti、Cd等)氧化物晶须(如MgO、ZnO、BeO、Al2O3、TiO2、Y2O3、Cr2O3等)陶瓷晶须(如碳化物晶须SiC、TiC、ZrC、WC、B4C)氮化物晶须(如TiB2、ZrB2、TaB2、CrB、NbB2等)无机盐类晶须(如K2Ti6O13和Al18B4O33)。第71页,共88页,2022年,5月20日,22点8分,星期四晶须的制备方法:化学气相沉积(CVD)法溶胶凝胶法气液固(VLS)法液相生长法固相生长法原位生长法。第72页,共88页,2022年,5月20日,22点8分,星期四新型氧化锌晶须在众多种类的晶须中,新型氧化锌晶须( Zinc Oxide Whisker,

36、 简写为ZnOw)以其独特的结构而倍受注目。第73页,共88页,2022年,5月20日,22点8分,星期四4.3 颗粒增强体 Particle Reinforcement颗粒增强体:用以改善基体材料性能的颗粒状材料颗粒增强体的特点是选材方便,可根据不同的性能要求选用不同的颗粒增强体。颗粒增强体成本低,易于批量生产。第74页,共88页,2022年,5月20日,22点8分,星期四具有高强度、高模量、耐热、耐磨、耐高温的陶瓷和石墨等非金属颗粒如碳化硅、氧化铝、氮化硅、碳化钛、碳化硼、石墨、细金刚石等。刚性颗粒增强体(Ragid Particle Reinforcement)第75页,共88页,202

37、2年,5月20日,22点8分,星期四颗粒增强体以很细的粉末(一般在10m以下)加入到金属基和陶瓷基中起提高耐磨、耐热、强度、模量和韧性的作用在Al合金中加入体积为30%,粒径为0.3m的Al2O3颗粒,材料在300时的拉伸强度仍可达220MPa,并且所加入的颗粒越细,复合材料的硬度和强度越高。在Si3N4陶瓷中加入体积为20%的TiC颗粒,可使其韧性提高5%。第76页,共88页,2022年,5月20日,22点8分,星期四延性颗粒增强体(Ductile Particle Reinforcement)主要为金属颗粒,加入到陶瓷基体和玻璃陶瓷基体中增强其韧性如Al2O3中加入Al,WC中加入Co等。

38、金属颗粒的加入使材料的韧性显著提高,但高温力学性能会有所下降。第77页,共88页,2022年,5月20日,22点8分,星期四复合材料的复合原理,是反映各种因素对复合材料性能的影响规律。影响复合材料性能的因素:工艺因素基体和增强材料的性能增强材料的形状、含量、分布增强材料的以及与基体的界面结合、结构按照复合原理,可以对所需要研究和开发的复合材料的性能,包括力学、物理、化学性能等进行设计、预测和评估。 (五) 复合材料的复合原理(KEY POINT)第78页,共88页,2022年,5月20日,22点8分,星期四在复合材料中,在已知各组分材料的力学性能、物理性能的情况下,复合材料的力学性能和物理性能主要取决于组成复合材料的材料组分的体积百分比(vol.%):5.1 混合法则 (mixing rule)Pc :复合材料的某性能,如强度、弹性模量、热导率等;Pi :各组分材料的对应复合材料的某性能;V :组成复合材料各组分的体积百分比;i:表示组成复合材料的组分数。第79页,共88页,2022年,5月20日,22点8分,星期四SiC/硼硅玻璃复合材料的强度随纤维体积含量线性增加80第80页,共88页,2022年,5月20日,22点8分,星期四颗粒增强复合材料的弹性模量与颗粒体积分量的关系81第81页,共88页,2022年,5月20日,22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论