版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、SPSS时间序列分析-spss操作步骤SPSS时间序列分析-spss操作步骤各种时间序列分析过程修补缺失值与创建时间序列序列图操作实例建立时间序列模型 操作实例应用时间序列模型操作自相关 操作实例季节分解法操作实例频谱分析法频谱分析操作实例互相关操作实例习题17及参考答案结束目 录返回各种时间序列分析过程季节分解法目 录返回各种时间序列分析过程返回各种时间序列分析过程返回修补缺失值过程与对话框返回修补缺失值过程与对话框返回创建时间序列对话框 运行函数Lag时的结果说明 返回创建时间序列对话框 运行函数Lag时的结果说明 返回序列图 Sequence Charts 返回序列图 Sequence
2、Charts 返回序列图过程 主对话框返回序列图过程 主对话框返回时间轴参考线对话框 返回时间轴参考线对话框 返回定义时间轴的格式对话框 返回定义时间轴的格式对话框 返回序列图应用实例输出 模型描述表 样品处理摘要 含有基准线的序列图 返回序列图应用实例输出 模型描述表 样品处理摘要 含有基准线的序建立时间序列模型 Create models 返回建立时间序列模型 Create models 返回时间序列建模提示框 时间序列建模提示框 Time Serises Modeler 对话框Variables选项卡 返回Time Serises Modeler 对话框Variab专家建模标准模型选项卡
3、 返回专家建模标准模型选项卡 返回判断异常值选项卡 判断异常值选项卡 指数平滑标准模型选项卡 返回 指数平滑标准模型选项卡 返回ARIMA Criteria Model选项卡 返回ARIMA Criteria Model选项卡 返回侦查异常值的选项卡 返回侦查异常值的选项卡 返回自变量转换选项卡 返回自变量转换选项卡 返回时间序列模型Statistics选项卡 返回时间序列模型Statistics选项卡 返回Time Serises Modler Plots选项卡 返回Time Serises Modler Plots选项卡 返Time Serises Modler Output Filter
4、对话框 返回Time Serises Modler Output FilTime Serises Modler Save选项卡 返回Time Serises Modler Save选项卡 返回时间序列模型 Option选项卡 返回时间序列模型 Option选项卡 返回时间序列分析实例输出模型描述 均数绝对百分比误差频数图 最大绝对百分比误差频数图 返回时间序列分析实例输出模型描述 均数绝对百分比误差频数图 最大时间序列分析实例输出(1)模型拟合 返回时间序列分析实例输出(1)模型拟合 返回时间序列分析实例输出(2)模型统计数据 返回时间序列分析实例输出(2)模型统计数据 返回时间序列分析实例输
5、出(3)预测部分结果 数据编辑器中的新变量 返回时间序列分析实例输出(3)预测部分结果 数据编辑器中的新变量应用时间序列模型 (Apply models )返回应用时间序列模型 (Apply models )返回Apply time Series models对话框 返回Apply time Series models对话框 返回自相关 (Autocorrelations )返回自相关 (Autocorrelations )返回 Autocorrelations对话框 返回 Autocorrelations对话框 返回 Options选项卡 返回 Options选项卡 返回 自相关分析实例输出
6、 模型描述 样品处理摘要 自相关表 返回 自相关分析实例输出 模型描述 样品处理摘 自相关分析实例输出(1)自相关图 偏自相关表 偏自相关图 返回 自相关分析实例输出(1)自相关图 偏自相关表 偏季 节 分 解 法Seasonal Deccomposition返回季 节 分 解 法Seasonal Deccompositi季节分解主对话框返回季节分解主对话框返回季节分解法分析实例输出 模型描述 季节因素 数据文件中增加的4个新变量 返回季节分解法分析实例输出 模型描述 季节因素 数据文件中增加的频谱分析Spectral Analyze 返回频谱分析Spectral Analyze 返回 谱图选
7、择对话框 返回 谱图选择 频谱分析实例输出模型描述 周期图 密度图 返回 频谱分析实例输出模型描述 周互相关 Cross -Autocorrelation 返回互相关 Cross -Autocorrelation 返回 Cross-Autocorrelation对话框 返回 Cross-Autocorrelation对话 Options对话框 返回 Options对 互相关实例输出模型描述 样品处理摘要 返回 互相关实例输出模型描述 样 互相关实例输出(1)互相关系数表 男女服装销售量的互相关图 返回 互相关实例输出(1)互相关系数表 男女服装17 习题 1、 时间序列的基本概念。 时间序列分
8、析过程中有哪几种常用的方法?2、 对数据用时间序列模型进行拟合处理前,应做哪些准备工作?3、 在哪个过程中可进行缺失值的修补?修补缺失值的方法共有几种?4、 在哪个过程中可定义时间变量?5、 时间序列分析是建立在序列的平稳的条件上的,怎样判断序列是否平稳?6、为什么要建一个时间序列的新变量?在SPSS的哪个过程中来建时间序列的新变量?7、光盘中Data17-07.sav(Data17-07a.sav是Data17-07.sav使用中文标签名的同一个文件)记录了一个邮购公司在1989年1月至1998年12月间男、女服装产品的销售量情况以及一些可能影响服装销售的宣传、服务方面的变量。试用学过的时间
9、序列方法对其进行分析,并预测1999年4月的男装的销售量。 返回17 习题 1、 时间序列的基本概念。 时间序列分析过程时间序列习题参考答案1、 时间序列是指一个依时间顺序做成的观察资料的集合。时间序列分析过程中最常用的方法是:指数平滑、自回归、综合移动平均及季节分解。2、 先对数据进行必要的预处理和观察,直到它变成稳态后再用这些过程对其进行分析。根据对数据建模前的预处理工作的先后顺序,将它分为三个步骤:首先,对有缺失值的数据进行修补,其次将数据资料定义为相应的时间序列,最后对时间序列数据的平稳性进行计算观察。3、 修补缺失值可在Transform菜单的Replace Missing Valu
10、es过程中进行。修补缺失值的方法共有五种,它们分别是:、Series mean; 、Mean of nearby points; 、Median of nearby points; 、Linear interpolation; 、Linear trend at point。4、 定义时间变量可在Data菜单的Define dates过程里实现。5、 判断序列是否平稳可以看它的均数和方差是否不再随时间的变化而变化、自相关系数是否只与时间间隔有关而与所处的时间无关。6、在时间序列分析中,为检验时间序列的平稳性,经常要用一阶差分、二阶差分,有时为选择一个合适的时间序列的模型还要对原时间序列数据进行对
11、数转换或平方根转换等。这就需要在已经建立的时间序列的数据库中,再建一个新的时间序列的变量。在SPSS的Create Time Series中可根据现有的数字型时间序列变量的函数建立一个新的变量。 返回时间序列习题参考答案1、 时间序列是指一个依时间顺序做成的时间序列习题参考答案(1)7、一、定义时间序列 (说明:1、对data17-07a.sav和data17-07.sav都要做这个工作。2、在第四步起data17-07.sav) 返回时间序列习题参考答案(1)7、一、定义时间序列 返回时间序列习题参考答案(2)二、序列图分析 返回时间序列习题参考答案(2)二、序列图分析返回时间序列习题参考答
12、案(3)返回时间序列习题参考答案(3)返回时间序列习题参考答案(4)序列图显示了许多峰值,其中许多峰值是等间隔出现的,有很清楚的上升趋势。等间隔的峰值暗示存在时间序列的周期成分。考虑到销售的季节性,高峰典型地发生在假期期间,你不必对数据中发现的年季节成分感到吃惊。也有峰值似乎没有成为季节性模式的一部分,这表示邻近的数据点显著偏离。这些点可能是异常值,它可以而且应该由Expert Modeler解决。 返回时间序列习题参考答案(4)序列图显示了许多峰值,其中许多峰值时间序列习题参考答案(5)三、自相关分析 返回时间序列习题参考答案(5)三、自相关分析 返回时间序列习题参考答案(6) 表中显示的是
13、自相关计算结果,从左向右,依次列出的是:滞后数、自相关系数值值、标准误差、Box-ljung统计量(值、自由度、原假设成立的概率值)。由于原假设(假设基本过程是独立的,也即假定时间序列所反映的随机过程是白噪声)成立的概率值都小于0.05,所以全部自相关均有显著性意义。 返回时间序列习题参考答案(6) 表中时间序列习题参考答案(7) 在滞后12处的重要的顶点暗示在数据中存在周期为12(12个季度)的季节成分。检查偏自相关函数图同样可得到这个十分明确的结论。 返回时间序列习题参考答案(7) 在滞后12处的重要时间序列习题参考答案(8)四、建立时间序列模型 返回时间序列习题参考答案(8)四、建立时间
14、序列模型 返回时间序列习题参考答案(9)返回时间序列习题参考答案(9)返回时间序列习题参考答案(10)返回时间序列习题参考答案(10)返回时间序列习题参考答案(11) 预测值与观察值很好地拟合在一起,表明模型有令人满意的预测能力。 返回时间序列习题参考答案(11) 预测值与观察值很好地拟合时间序列习题参考答案(12)该模型描述表包含每个估计模型名称和模型类型。在本例中,因变量是男子服装销售量,系统分配的名称是Model_1。专家建模得出的最佳拟合模型为ARIMA(0,0,0)(0,1,0),它是1阶季节差分自回归综合移动平模型。模型的季节性说明了在序列图中见到的季节性峰值,1阶差分反映了数据中
15、明显的上升趋势。返回时间序列习题参考答案(12)该模型描述表包含每个估计模型名称时间序列习题参考答案(13) 模型统计表给出了汇总信息和对每个估计模型最佳拟合的统计量。每个模型的结果用模型描述表中提供的模型标识符被标识。模型包含你最初指定的5个候选预测因子中的两个预测因子。所以专家建模已经识别出两个可以用来预测的自变量。尽管时间序列模型主动提供了许多不同的最佳拟合统计量,但我们只选择了平稳值。该统计量提供了由模型解释的序列中总变异的百分比的估计,当有趋势或季节性模式时平稳是最适宜的,就像本例的情况一样。本例是个很大的值说明拟合很好。Ljung-Box统计量同改良的Box-Pierce统计量一样
16、知名,提供了模型是否被正确地指定的象征。显著性值小于0.05暗示在观察值序列中存在不是由模型解释的结构。本例0.984的显著性值说明它是不显著的,所以我们可以肯定正确地指定了模型。专家建模侦查出9个异常值。这些点中的每一个都已适当地被模拟处理,所以不需要你从序列中移走它们。 返回时间序列习题参考答案(13) 模型时间序列习题参考答案(14) ARIMA模型参数表显示模型中所有参数的值,及由模型标识符标识的每个模型。它列出了模型中所有的变量,包括因变量和由专家建模确定有显著性的自变量。现在我们清楚地看到在模型统计量表中的两个预测因子分别是邮寄商品目录的数量和用于订购的开放式 线数量。它们都有显著
17、性意义(Sig.小于0.05)。返回时间序列习题参考答案(14) ARIMA模型时间序列习题参考答案(15)五、预测1999年3月的邮寄商品目录的数量和用于订购的开放式 线数量。 返回时间序列习题参考答案(15)五、预测1999年3月的邮寄商品时间序列习题参考答案(16) 在数据编辑窗中显示新变量Predicted_mail_Model_1 and Predicted_phone_Model_2,包括其模型预测值。这些预测值被添加到121至123的记录中。下面用这些值做相应变换后来预测1999年3月的男装销售量。 返回时间序列习题参考答案(16) 在数时间序列习题参考答案(17)六、数据转换返回时间序列习题参考答案(17)六、数据转换返回时间序列习题参考答案(18)返回时间序列习题参考答案(18)返回时间序列习题参考答案(19)七、预测19
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024电机技术检测与认证服务合同2篇
- 2024年度网络安全防护体系建设与运维合同
- 二零二四年卫星导航与位置服务系统合同2篇
- 2024年度细沙购销合同
- 基于物联网的智能家居系统分包研发合同2024年度
- 2024年度广告代理合同的广告代理范围与代理权益
- 正规无形资产租赁合同(2024年度)
- 2024版声纹识别技术许可合同
- 2024年度车展现场志愿者培训合同
- 二零二四年度房地产项目发泡混凝土应用技术咨询合同2篇
- 初中申请加入培优班申请书
- 检维修作业安全管理
- 隐蔽-植物-种植隐蔽工程检查验收记录
- petrel软件详细教程课件
- 新能源汽车技术高职PPT完整全套教学课件
- 医院人力资源管理测试题
- 首先打破一切常规:世界顶级管理者的成功秘诀
- 中班心理健康活动:《我的情绪小屋》
- 公司员工奖励制度
- 电解槽维护检修安全规程
- 二年级上册数学教案-1.2 加减混合运算(珠心算)苏教版
评论
0/150
提交评论