版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级下数学讲义 讲义01 分式及分式方程一、选择题:1.分式中,当时,下列结论正确的是( ) A分式的值为零 B.分式无意义 C. 若时,分式的值为零 D. 若时,分式的值为零2.如果分式的值恒为正数,则的x取值范围是( )A. B. C. D.3.已知,则的值是( ) A. B. C.2 D.24.已知x25x19970,则代数式 eq f((x2)2(x1)21,x2)的值为( ) A. 1999 B. 2000C. 2001 D. 25.设mn0,m2n24mn,则的值等于( )A.2 B. C.D. 36.已知 ,则直线一定经过( )A.第一、二象限 B.第二、三象限 C.第三、四象
2、限 D.第一、四象限7.若a使分式没有意义,那么a的值为( ) A.0 B.或0 C. D.8.甲乙两人相距k千米,他们同时乘摩托车出发。若同向而行,则r小时后并行;若相向而行,则t小时后相遇,则较快者的速度与较慢者速度之比是( ) A. B. C. D.二、填空题:9.当x_时,分式 eq f(x2x6,(1x)(x3))的值为零10.若的值为,则的值为 11.若分式的值为正整数,则整数的值为 12.如果分式不论x取何值都有意义,那么m的取值范围是 13.已知,化简分式的结果为 14.15.如果记 =f(x),并且f(1)表示当x=1时y的值,即f(1)=;f()表示当x=时y的值,即f()
3、=;那么f(1)+f(2)+f()+f(3)+f()+f(n)+f()= (结果用含n的代数式表示)三、综合题:16.化简:(1) (2)17.解分式方程:(1) (2)(3) 18.已知,求的值。19.如果x2-3x+1=0,求的值。20.已知a、b、c为实数,求分式的值。21.已知a、b均为正数,且,求的值。22.已知a+b+c=0,求的值。23.某开发公司生产的960件新产品需要精加工后才能投放市场现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工数量的 eq f(2,3),公司需付甲工厂加工费用每
4、天80元,需付乙工厂加工费用每天120元(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成,在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天10元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由课堂小练-分式及分式方程 姓名:1.化简,其结果是( )A B C D2.计算: 3.化简:4.解分式方程:5.分式中x取什么值时,分式的值为0?x取什么值时,分式无意义?6.先化简,再求值:,其中.7.已知(0,0),求的值。8.当m为何值时,方程-=会产生增根?9.已知方程,是否存在的值使得方
5、程无解?若存在,求出满足条件的的值;若不存在,请说明理由。10.A、B两地路程为150千米,甲、乙两车分别从A、B两地同时出发,相向而行,2小时后相遇,相遇后,各以原来的速度继续行驶,甲车到达B后,立即沿原路返回,返回时的速度是原来速度的2倍,结果甲、乙两车同时到达A地,求甲车原来的速度和乙车的速度11.某书店老板去图书批发市场购买某种图书第一次用1200元购书若干本,并按该书定价7元出售,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书试问该老板这两次售书总体上是赔
6、钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少? 某商人用7200元购进甲、乙两种商品,然后卖出,若每种商品均用去一半的钱,则一共可购进750件;若用的钱买甲种商品,其余的钱买乙种商品,则要少购进50件,卖出时,甲种商品可盈利20%,乙种商品可盈利25%(1)求甲、乙两种商品的购进价和卖出价;(2)因市场需求总量有限,每种商品最多只能卖出600件,那么该商人应采取怎样的购货方式才能获得最大利润?最大利润是多少?讲义02 分式方程及应用例1.某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。求先遣队和大队的速
7、度各是多少?例2.某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17。5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?例3.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程,已知甲工程队比乙工程队每天多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同。 (1)甲、乙工程队每天各能铺设多少米? (2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你
8、帮助设计出来。例4.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但每次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个。 (1)求第一次每个书包的进价是多少元? (2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?例5.由于受金融危机影响,某店经理的甲型号手机今年的售价比去年每台降价500元,如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元。 (1)今年甲型号手机每台售价为多少元? (2)为了提高利润,该店计
9、划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两钟手机共20台,请问有几种进货方案? (3)若乙型号手机的售价为1400元,为了促销,公司决定每台售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?课堂练习:1.学完分式运算后,老师出了一道题“化简:”小明的做法是:原式;小亮的做法是:原式;小芳的做法是:原式其中正确的是( ) A小明 B小亮 C小芳D没有正确的2.解分式方程,可知方程( ) A解为 B解为 C解为 D无解3.甲志愿者计划
10、用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ) A8 B.7 C6 D54.用换元法解分式方程时,如果设,将原方程化为关于的整式方程,那么这个整式方程是( ) ABCD5.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为( )(A) (B)(C) (D)6.化简: 7.已知,则 8.若,则= 9.a、b为实数,且ab=1,设P=
11、,Q=,则P Q(填“”、“”或“”)10.已知:, 则x=_11.已知,则M= 12.(1)已知,则(2)若_。(3)若_13.若方程有增根,则的值可能是 14.若方程有负数根,则k的取值范围是_15.解分式方程: 16.解方程:17.解方程:18.先化简,再求值其中19.甲、乙两人同时从、两地相向而行,如果都走1小时,两人之间的距离等于、两地距离的;如果甲走小时,乙走半小时,这样两人之间的距离等于、间全程的一半,求甲、乙两人各需多少时间走完全程?20.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。求这艘轮
12、船在静水中的速度和水流速度21.在我市某一城市美化工程招标时,有甲、乙两个工程队投标经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?22.某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完第二次去采购时发现批发价上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件两批玩具的售价均为2.8元问第二次
13、采购玩具多少件?23.供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩托车先行,t(t0)小时后,乙开抢修车载着所需材料出发.若t=(小时),抢修车的速度是摩托车速度的1.5倍,且甲、乙两人同时到达,求摩托车的速度;若摩托车的速度是45千米/时,抢修车的速度是60千米/时,且乙不能比甲晚到,则t的最大值是多少?24,某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号
14、电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,值应是多少?此时,哪种方案对公司更有利?课堂小练-分式方程及应用 姓名:1.计算:() ABCD2.若解分式方程产生增根,则m的值是( ) A. B. C. D. 3.甲、乙两地相距S千米,某人从甲地出发,以v千米/小时的速度步行,走了a小时后改乘汽车,又过b小时到达乙地,则汽车的速度( ) A. B. C
15、. D. 4.已知,则_5.化简:_6.化简: 7.设,则的值等于 8.若 9.已知:,则_10.已知关于的方程的解是正数,则m的取值范围为_11.若关于的分式方程无解,则 12.化简: 13.求x为何值时,代数式的值等于2?14.已知x=2,y=2,计算代数式的值MNABxy(千米)(分钟)MNABxy(千米)(分钟)654321102030O(1)求步行同学每分钟走多少千米?(2)右图是两组同学前往水洞时的路程(千米)与时间(分钟)的函数图象完成下列填空:表示骑车同学的函数图象是线段 ;已知点坐标,则点的坐标为( )16.某服装厂为学校艺术团生产一批演出服,总成本3200元,售价每套40元
16、,服装厂向25名家庭贫困学生免费提供。经核算,这25套演出服的成本正好是原定生产这批演出服的利润。问这批演出服生产了多少套?17.根据规划设计,某市工程队准备在开发区修建一条长300米的盲道.铺设了60米后,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加10米,结果共用了8天完成任务,该工程队改进技术后每天铺设盲道多少米?18.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同。 (1)求每件甲种、乙种玩具的进价分别是多少元? (2)商场计划购进甲、乙两种玩具共18件,其中甲种玩具的件
17、数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?讲义03 反比例函数例1.设函数y=(m-2),当m取何值时,它是反比例函数?它的图象位于哪些象限?求当时函数值y的变化范围例2.如图,已知一次函数和反比例函数图象在第一象限内有两个不同的公共点A、B(1)求实数的取值范围;(2)若AOB的面积S24,求的值例3.如图,已知点A(4,m),B(-1,n)在反比例函数的图象上,直线AB分别与x轴,y轴相交于C、D两点。(1)求直线AB的解析式;(2)C、D两点坐标;(3)是多少?例4.如图,函数在第一象限的图象上有一点C(1,5),过点C的直线ykxb(k0)
18、与x轴交于点A(a,0)(1)写出a关于k的函数关系式;(2)当该直线与双曲线在第一象限的另一交点D的横坐标是9时,求COD的面积课堂练习:1.若反比例函数的图象经过点,其中,则此反比例函数的图象在( ) A第一、二象限B第一、三象限C第二、四象限D第三、四象限2.函数的图象经过点(-4,6),则下列个点中在图象上的是( ) A.(3,8 ) B.(-3,8) C.(-8,-3) D.(-4,-6)3.已知反比例函数的图象在第二、第四象限内,函数图象上有两点A(,y1)、 B(5,y2),则y1与y2的大小关系为( ) A.y1y2 B.y1y2 C.y1y2 D.无法确定4.已知反比例函数的
19、图像上有两点A(,),B(,),且,则的值是( ) A.正数 B.负数 C.非正数 D.不能确定5.如图,反比例函数的图象与直线相交于B两点,AC轴,BC轴,则ABC的面积等于 个面积单位.( ) A.4 B.5 C.10 D.20 6.设P是函数在第一象限的图像上任意一点,点P关于原点的对称点为P,过P作PA平行于y轴,过P作PA平行于x轴,PA与PA交于A点,则的面积( ) A等于2 B等于4 C等于8 D随P点的变化而变化7.如图,直线是经过点(1,0)且与y轴平行的直线RtABC中直角边AC=4,BC=3将BC边在直线上滑动,使A,B在函数的图象上那么k的值是( ) A.3 B. .1
20、2 D.8.若正比例函数与反比例函数的图象交于点则的值是( ) A.或 B.或 C. D.9.如图,点P在反比例函数(x0)的图象上,且横坐标为2若将点P先向右平移两个单位,再向上平移一个单位后得到点P则在第一象限内,经过点P的反比例函数图象的解析式是( ) A.B. C.D. 10.如图,点B、P在函数的图象上,四边形COAB是正方形,四边形FOEP是长方形,下列说法不正确的是( )A.长方形BCFG和长方形GAEP的面积相等 B.点B的坐标为(4,4)C.的图象关于过O、B的直线对称 D.长方形FOEP和正方形COAB面积相等11.在的三个顶点中,可能在反比例函数的图象上的点是 12.若反
21、比例函数y的图象位于一、三象限内,正比例函数y(2k9)x过二、四象限,则k的整数值是_13.已知点P(1,a)在反比例函数y(k0)的图象上,其中am2+2m+3(m为实数),则这个函数的图象在第_象限.14.已知反比例函数y(k0),当x0时,y随x的增大而增大,那么一次函数ykxk的图像过象限.15.反比例函数的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果SMON2,则k的值为 16.如图,已知双曲线(x0)经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF的面积为4,则k_17.如图,在直角坐标系中,直线y6x与函数的图象交于A,B,设A(x1,y
22、1),那么长为x1,宽为y1的矩形的面积和周长分别是_18.已知,都在图像上若则的值为 19.两个反比例函数,在第一象限内的图象点、在反比例函数上,它们的横坐标分别为、,纵坐标分别是1、3、5共2012个连续奇数,过、分别作轴的平行线,与的图象交点依次为、,则 20.若反比例函数y的图象经过第二、四象限,则函数的解析式为 .21.已知一次函数的图象与反比例函数的图象相交,其中一个交点的纵坐标为6。(1)求两个函数的解析式;(2)结合图象求出时,x的取值范围。22.已知反比例函数y=的图象经过点(4,),若一次函数y=x+1的图象平移后经过该反比反例函数图象上的点B(2,m),求平移后的一次函数
23、图像与x轴的交点坐标。23.平行于直线的直线不经过第四象限,且与函数和图象交于点A,过点A作轴于点B,轴于点C,四边形ABOC的周长为8求直线的解析式AABOCyxl24.如图,已知点A(4,),B(1,)在反比例函数的图象上,直线AB与轴交于点C,(1)求n值;(2)如果点D在x轴上,且DADC,求点D的坐标.25.如图,正比例函数的图象与反比例函数在第一象限的图象交于点,过点作轴的垂线,垂足为,已知的面积为1.(1)求反比例函数的解析式;(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的横坐标为1,在轴上求一点,使最小.26.如图,四边形OABC是面积为4的正方形,函数(x
24、0)的图象经过点B (1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC、MABC设线段MC、NA分别与函数(x0)的图象交于点E、F,求线段EF所在直线的解析式课堂小练-反比例函数 姓名:1.下列数表中分别给出了变量y与变量x之间的对应关系,其中是反比例函数关系的是( )2.已知,且,则函数与在同一坐标系中的图象不可能是( )3.若点(3,4)是反比例函数y=图象上一点,则此函数图象必须经过点( ) A.(2,6) B.(2,-6) C.(4,-3) D.(3,-4)4.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1a2,则b1与b2的大
25、小关系是()Ab1b2 Bb1 = b2 Cb1b2 D大小不确定5.如图,A、B是反比例函数y的图象上的两点AC、BD都垂直于x轴,垂足分别为C、DAB的延长线交x轴于点E若C、D的坐标分别为(1,0)、(4,0),则BDE的面积与ACE的面积的比值是( ) A B D 6.如图,一次函数与反比例函数的图象交于,则使的的取值范围是7.当n取 值时,y(n2+2n)x是反比例函数。8.是关于的反比例函数,且图象在第二、四象限,则的值为 9.反比例函数y=(k是常数,k0)的图象经过点(a,-a),那么k_0(填“”或“0),OMN的面积为S,求S和t的函数关系式,并指出t的取值范围。例4.已知
26、:如图,正比例函数的图象与反比例函数的图象交于点A(3,2). 试确定上述正比例函数和反比例函数的表达式; 根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值? M(m,n)是反比例函数图象上的一动点,其中0m3过点作直线MNx轴,交y轴于点B;过点A作直线ACy轴交x轴于点C,交直线MB于点D当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由课堂练习:1.已知关于x的函数yk(x1)和y(k0)它们在同一坐标系中的大致图象是( )2.函数y与函数yx的图象在同一平面直角坐标系内的交点个数是( )A1个 B2个 C3个 D0个3.已知点P(x,y)在
27、函数的图象上,那么点P应在平面直角坐标系中的( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.根据图中所示的程序,得到了y与x的函数图象,过点M作PQx轴交图象于点P,Q,连接OP,OQ.则以下结论:x0时,;OPQ的面积为定值;x0时,y随x的增大而增大;MQ=2PM;POQ可以等于90。 其中正确的结论是( )A B C D5.如图所示,梯形AOBC的顶点A,C在反比例函数图像上,OABC,上底边OA在直线y=x上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为( )A3 B C1 D+1 6.如图,是反比例函数和()在第一象限的图象,直线AB/x轴,并分别交两条
28、曲母于A、B两点,若SAOB=2,则的值是( ) A.1 B.2 C.4 D.87.反比例函数y= eq f(k,x) 的图象如图5所示,则k的值可能是( ) A1 B eq f(1,2) C1 D28.若A、B两点关于轴对称,且点A在双曲线上,点B在直线上,设点A的坐标为(a,b),则= 9.函数 , 的图象如图所示,则结论: 两函数图象的交点A的坐标为(3 ,3 ) 当时, 当 时, BC = 8 当 逐渐增大时,随着的增大而增大,随着 的增大而减小其中正确结论的序号是 . 10.如图,双曲线经过四边形OABC的顶点A、C,ABC90,OC平分OA与轴正半轴的夹角,AB轴,将ABC沿AC翻
29、折后得到ABC,B点落在OA上,则四边形OABC的面积是.11.已知y=y1+y2 ,y1与+1成正比例,2与+1成反比例,当=0时,=-5;当=2时,=-7。(1)求与的函数关系式;(2)当5时,求的值。12.已知一次函数y=x+m与反比例函数y=(m-1)的图象在第一象限内的交点为P(x0,3).(1)求x0的值;(2)求一次函数和反比例函数的解析式.13.如图,RtABO的顶点A是双曲线y与直线yx(k1)在第二象限的交点ABx轴于B,且SABO(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点AC的坐标和AOC的面积14.已知函数的图象和两条直线y=x,y=2x在第一象限内分别
30、相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q2,P2 R2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R1和O Q2P2 R2的周长,并比较它们的大小课堂小练04-反比例综合题 姓名:1.函数与的图象可能是( )2.函数与()的图象的交点个数是( )A 2 B1 C 0 D不确定3.已知ab0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是( )A第一象限 B第二象限 C第三象限 D第四象限4.在函数(a为常数)的图象上有三个点,则函数值的大小关系是( )ABCD5.如图,直线L和双曲线交于A、
31、B两点,P是线段AB上的点(不与A、B点重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设AOC的面积为S1,BOD的面积为S2,POE的面积为S3.则( ) A. B. C. D. 6.如图,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则ABC的面积为( )A3 B4 C5 D67.已知函数是反比例函数,若它的图象在第二、四象限内,那么k=_ 若y随x的增大而减小,那么k=_8.已知一次函数与反比例函数的图象的一个交点为P(a,b),且P到原点的距离是10,求a、b的值及反比例函
32、数的解析式9.如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点) 利用图中条件,求反比例函数的解析式和m的值; 双曲线上是否存在一点P,使得POC和POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由10.已知:如图,在平面直角坐标系中,直线AB与轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,若SAOB=4(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求OCB的面积讲义05 勾股定理课堂练习:1.若一直角三角形两边长分别为12和5,则第三边
33、长为( )A. 13 B. 13或 C. 13或15 D. 152.直角三角形的周长为12,斜边长为5,则面积为( )A. 12 B. 10 C. 8 D. 63.如果一个等腰直角三角形的面积是2,则斜边长的平方为( )A. 2 B. 4 C. 8 D. 4.若直角三角形两条直角边长分别为5,12,则斜边上的高为( )A. 6 B. C. 8 D. 5.若等腰三角形两边长分别为4和6,则底边上的高等于( ) A. 或 B. 或 C. D. 6.ABC中,若,则此三角形应是( ) A.锐角三角形 B直角三角形 C钝角三角形 D.等腰三角形7.一个直角三角形的两条直角边长为a、b,斜边上的高为 h
34、,斜边长为c,则以 c+h,a+b,h为边的三角形的形状是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D.不能确定 8.直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( ) A. ab=h2 B. a2+b2=2h2 C. += D. += 9.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A121 B120 C90 D不能确定10.如图是一个长方体盒子(尺寸如图所示),在长方体下底部的A点有一只蚂蚁,它想吃到上底面B点的食物(BC=3cm),需爬行的最短路程是多少?11.如图,公路MN和公路PQ在P点处交汇,点A处有
35、一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?12.三角形ABC是等腰三角形AB=AC=13,BC=10,将AB向AC方向对折,再将CD折叠到CA边上,折痕CE,求三角形ACE的面积。13.边长为8和4的矩形OABC的两边分别在直角坐标系的X轴和Y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交X轴于点D,求:三角形ADC的面积14.已知:如图,ABC是等腰直角三角形,BA
36、C=90,EAF与BC交于E、F两点, EAF=45,求证:。15.如图,在中,相交于,于, 求证:.16.如图,在中,,D为斜边BC中点,,求证:17.如图,已知:,于P. 求证:. 18.折叠矩形纸片,先折出折痕对角线BD,在绕点D折叠,使点A落在BD的E处,折痕DG,若AB=2,BC=1,求AG的长.19.矩形ABCD中,AB=6,BC=8,先把它对折,折痕为EF,展开后再沿BG折叠,使A落在EF上的A1,求第二次折痕BG的长.20.矩形ABCD如图折叠,使点D落在BC边上的点F处,已知AB=8,BC=10,求折痕AE的长21.如图,长方形纸片ABCD中,AB=4cm,BC=3cm,现将
37、A,C重合,使纸片折叠压平,设折痕为EF,试确定重叠部分三角形AEF的面积.22.圆柱形坡璃容器,高18cm,底面周长为60cm,在外侧距下底1cm点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度。23.如图所示,ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DEDF,若BE=12,CF=5求线段EF的长。 课堂小练05-直角三角形 姓名:1.一根旗杆在离地面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高( ) A. 10.5米 B. 7.5米 C. 12
38、米 D. 8米 2.等腰三角形底边长10,腰长为13,则此三角形的面积为()A. 40 B. 50 C. 60D. 703.三角形的三边长为,则这个三角形是( )A. 等边三角形 B. 钝角三角形 C. 直角三角形 D. 锐角三角形4.已知直角三角形中30角所对的直角边长是cm,则另一条直角边的长是( ) A. 4 cm B. cm C. 6 cm D. cm5.ABC中,AB15,AC13,高AD12,则ABC的周长为() A42 B 32 C42 或 32 D37 或 336.如图,在中,过顶点的直线的平分线分别交于点,若,则的长为( ) A.14 B.16 C.18 D.207.若一个三
39、角形的三边之比为3:4:5,且周长为60cm,则它的面积为 、8.一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为_9.在ABC中,C=900,,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA-AB-BC的路径再回到C点,需要 分的时间.10.在ABC中,C=90,AC=2.1 cm,BC=2.8 cm.(1)求这个三角形的斜边AB的长和斜边上的高CD的长.(2)求斜边被分成的两部分AD和BD的长.11.如图,某购物中心在会十.一间准备将高5 m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元
40、钱? 12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?13.如图所示,有一个圆柱形状的建筑物,底面直径为8 m,高为7 m为方便工作人员从底部A点到达顶部的B点,要绕建筑物修一螺旋状的梯子试求梯子最短为多少米?已知:如图,B=D=90,A=60,AB=4,CD=2。求:四边形ABCD的面积。 讲义06 勾股定理的应用一、选择题:1.如同,四边形ABCD中,AB=BC,
41、ABC=CDA=900,BEAD于点E,且四边形ABCD的面积为8,则BE=( ) A.2 B.3 C. D. 2.将一个有45度角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图(3),则三角板的最大边的长为( ) A.cm B.6cm C.3cm D.cm3.如图是2002年8 月北京第24届国际数学家大会会标,由4 个全等的直角三角形拼合而成.若图中大小正方形面积分别是62和4,则直角三角形的两条直角边长分别为( ) A.6,4 B.62,4 C.62,4 D.6, 44.在同一平面上把三边BC=3,A
42、C=4,AB=5的三角形沿最长边AB翻折后得到ABC/,则CC/的长等于( ) A. B. C. D.5.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是( ) A.CD,EF,GH B.AB,EF,GH C.AB,CD,GH D.AB,CD,EF 二、填空题:6.三角形三个内角之比为1:2:3,它的最长边为a,那么以其余两边为边所作的正方形面积分别为 7.等边三角形的高为a,则它的面积是8.有两根木条,长分别为60cm和80cm,现再截一根木条做一个钝角三角形,则第三根木条x长度的取值范围 9.如图,RtABC中,BC是斜边,将ABP绕
43、点A逆时针旋转后,能与ACP重合,如果AP=1,则PP=_ 10.如图,是等边三角形,点是边上任意一点,于点,于点若,则_11.已知:如图,ABC中,C = 90,点O为ABC的三条角平分线的交点,ODBC,OEAC,OFAB,点D、E、F分别是垂足,且BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的距离分别等于 cm.12.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角A=30,B=90,BC=6米. 当正方形DEFH运动到什么位置,即当AE=_米时,有DC=AE+BC. 13.如图,P是矩形ABCD内一点,PA=1,PB=5,PC=7,则P
44、D=_三、综合题:14.如图所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),OAB是直角三角形吗?借助于网格,证明你的结论.15.已知a、b、c为ABC的三边,且满足a2c2-b2c2=a4-b4,试判断ABC的形状.16.在ABC中,BC=a,AC=b,AB=c,若C=900,如图(1),根据勾股定理,则a2+b2=c2,若ABC不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论。17.已知直角三角形的周长为2,斜边上的中线为1,求它的面积.18.王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已
45、知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长;(2)问第一条边长可以为7米吗?为什么?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,请说明理由.19.如图,已知RtABC,ACB=900,三边分别为a、b、c,分别以AC,BC,AB为直径作半圆,画成如图形式,求证:S影=SRtABC。20.如图,长方形ABCD中,AD=8cm,CD=4cm.(1)若点P是边AD上的一个动点,当P在什么位置时PA=PC? (2)在(1)中,当点P在点P时,有,Q是AB边上的一个动点
46、,若时, 与垂直吗?为什么?21.已知:如图,DE=m,BC=n,EBC与DCB互余,求BD2+CD2.22.如图,在坐标系中,直线与x轴和y轴交与点A和点B,将OAB绕O点旋转得到OA1B2,再绕B1旋转,得到O1B1A2。(1)求直线A1B1解析式;(2)求点A2的坐标;(3)链接OO1,求OO1B1的面积。23.如图,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板 PHF 的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P,能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时 AP 的长;若不能,请说明理由.24.如图,某
47、货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货。此时,接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60方向移动,距台风中心200海里产圆形区域(包括边界)均会受到影响。(1)B处是否会受到台风的影响?请说明理由;(2)如果B处受到台风影响,那么受台风影响的时间有多长?(3)为避免受到台风的影响,该船应在多少小时内卸完货物?课堂小练-勾股定理的应用 姓名:1.如图,ABC中,C=90,AC=3,B=30,点P是BC边上的动点,则AP长不可能是( ) A.3.5 B.4.2 C.5.8 D.7 2.已知,如图长方形ABCD
48、中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则ABE的面积为() A.6cm2B.8cm2C.10cm2 D.12cm23.如图,四边形ABCD中,AB=3cm,BC=4cm,CD=12cm,DA=13cm,且ABC=900,则四边形ABCD的面积是( ) A36 B30 C D无法确定4.点A在双曲线y=上,且OA=4,过A作ACx轴,垂足为C,OA的垂直平分线交OC于B,则ABC的周长为( ) A.2 B.2 C.4 D.5.在ABC中,C=90,BC=3,AC=4.以斜边AB为直径作半圆,则这个半圆的面积是_.(保留)6.如果三条线段的长度分别为8cm、
49、xcm、18cm,这三条线段恰好能组成一个直角三角形,那么以x为边长的正方形的面积为_7.已知ABC的三边a、b、c满足等式|a-b-1|+|2a-b-14|=-|c-5|,则ABC的面积为_8.如图,点A的坐标为(2,0),点B在直线上运动,当线段AB最短时,点B的坐标为 9.将一副三角尺如图所示叠放在一起,若=14cm,则阴影部分的面积是_cm2.10.已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.11.折叠矩形ABCD的一边AD, 折痕为AE, 且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。求
50、点F和点E坐标。12.已知直角三角形的周长是,斜边长2,求它的面积13.在四边形ABCD中,BAD=90,AB=2cm,连结AC,ABC恰为等边三角形,ACD恰为直角三角形,求四边形ABCD的面积。讲义07 综合复习题1.某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元,如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ) A.分钟 B.分钟 C.分钟 D.分钟 2.已知反比例函数的图像经过点P(m,n),则化简:的结果是( ) A. 2m2 B. 2n2 C. n2-m2 D. m2-n2 3.下列四种说法:(1)分式的分子、分母都乘以(或除以)a+
51、2,分式的值不变;(2)分式的值能等于零;(3)方程的解是x=-1;(4)的最小值为零;其中正确的说法有( ) A.1个 B.2个 C.3个 D.4个4.如图,ABCD于B,ABD和BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为( ).(A)12 (B)7 (C)5 (D)13EABCDEABCD5.如图,四边形是正方形,垂直于,且=3,=4,阴影部分的面积是_6.=7.若,则x= 8.已知x为整数,且分式的值为整数,则x可取的值为 9.直线过一、三、四象限,则函数的图象在 象限,并且在每一个象限内随的增大而 10.如图,将边长为2的等边三角形沿x轴正方向连续翻折2010次
52、,依次得到点P1、P2、P3、P2010,则点P2012的坐标是 OOyxP1P2P311.反比例函数的函数值为4时,自变量x的值是 12.若,则直线与坐标轴围成的三角形面积是 13.已知点P(1,a)在反比例函数的图像上,其中(m为实数),则这个函数的图像在第 象限。14.解方程:,如果,那么原方程化为关于y的整式方程是 15.已知等腰RtABC中,C=900,AC=BC=4,以BC为边作等腰RtBCD,则CD= 16.如图,直线上有三个正方形,若的面积分别为5和11,则的面积为 17.如图,在平面直角坐标系中,函数(,常数)的图象经过点,(),过点作轴的垂线,垂足为若的面积为2,则点的坐标
53、为 18.如图所示的长方体是某种饮料的纸质包装盒,规格为5610(单位:),在上盖中开有一孔便于插吸管,吸管长为13,小孔到图中边AB距离为1,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为h,则h的最小值大约为_.(精确到个位,参考数据:)19.先化简,再求值:(),其中=2+。20.若,其中A、B为常数,求:(1)A+B;(2)2A-B的值。21.若方程的解是正数,求a的取值范围。22.如图,正比例函数y= eq f(1,2)x的图像与反比例函数y= eq f(k,x) (k0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知OAM的面积为1.(1)求反比例函
54、数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且点B的横坐标为1,在x轴上求一点P,使PA+PB最小.23.如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1. 过点A作ABx轴于点B,AOB的面积为1.(1)求反比例函数和一次函数的解析式.(2)若一次函数的图象与x轴相交于点C,求ACO的度数.(3)结合图象直接写出:当0时,x的取值范围. 24.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系: (1)猜测并确定y与x之间的函数关系式; (2)设经营此贺卡的销售利润为W元,
55、求出W与x之间的函数关系式。若物价局规定此贺卡的销售最高不能超过10元/个,请你求出当日销售单价x定位多少元时,才能获得最大销售利润?25.已知某项工程由甲、乙两队合作12天可以完成,共需工程费用13800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费比乙队多150元。(1)甲、乙两队单独完成这项工程分别需要多少天; (2)若工程管理部门决定从两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由。26.如图,在ABC中,C=900,AC=8cm,AB=10cm,点P、Q同时由A、C两点出发,分别沿AC,CB方向移动,
56、它们的速度都是1cm/s,经过几秒,P,Q相距cm?并求此时PCQ的面积。28.在直角ABC中,C=900,AC=20,BC=15,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿显得CB也向点B方向运动。如果点P的速度是4个单位/秒,点Q的速度是2个单位/秒,它们同时出发,当有一点到达所在显得的端点时,就停止运动。设运动的时间为t秒, 求:(1)用含t的代数式表示直角CPQ的面积S; (2)当t=3秒时,这时P、Q两点之间的距离是多少? (3)当t为多收秒时,以点C、P、Q为顶点的三角形为24cm2?课后练习:1.已知ab0,ab,则 eq f(a-1+b-1,a-1-b-1
57、)应等于( ) A.- eq f(a+b,a-b) B. eq f(a+b,a-b) C. eq f(a-b,a+b) D. eq f(a-b,a+b)2.若表示一个整数,则整数a可以取值有( )A1个 B2个 C3个 D4个3.等于( ) A. B. C. D. 4.下列分式中的最简分式(不能再约分)的是( ) A、 B、 C、 D、5.已知实数、满足,则的值等于( )A、0B、1C、2D、不确定6.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A、B两地间往返一次的平均速度为( )A B C D无法计算7.如图,啤酒瓶高为,瓶内酒面高为,若将
58、瓶盖好后倒置,酒面高为,(),则酒瓶的容积与瓶内酒的体积之比为() A. B. C. D.8.一列火车自2004年全国铁路第5次提速后,速度提高了26km/h。现该火车从甲站到乙站所用的时间比原来减少了1h。已知甲、乙两站的路程是312km,若设火车提速前速度为xkm/h,则根据题意所列方程正确的是( )A. eq f(312,x)- eq f(312,x-26)=1 B. eq f(312,x+26)- eq f(312,x)=1 C. eq f(312,x)- eq f(312,x+26)=1 D. eq f(312,x-26)- eq f(312,x)=19.若 eq f(x+2)-(x
59、+1),(x+1)(x+2)= eq f(m,x+1)- eq f(n,x+2),其中m,n为常数,则mn=_10.已知,则11.已知 ,则 ,由此可得 12,.如图所示,将一根24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出杯子外面的长为hcm,则h的取值范围是_13.已知一次函数的图象与反比例函数图象交于点 P(4,n)。(1)求P点坐标;(2)求一次函数的解析式;(3)若点A,B在上述一次函数的图象上,且,试比较、 的大小,并说明理由。14.已知,求 的值 。15.甲、乙两个施工队共同完成某小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工
60、程。已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两个施工队单独完成此项工程各需多少天?16.某市为了进一步缓解交通堵塞现象,决定修建一条从市中心到飞机场的轻轨铁路。为了使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划这项工程要多少个月?课堂小练-07 综合复习题 姓名:1.若关于x的方程 有解,则必须满足条件( )A.cd B.c-d C.bc-ad D.ab2.计算的结果是( ) A. B. C. D.3.若三角形的三边长分别为,那么最长边上的高是( ) A. B. C. D.4.规定,则的值为( )A. B. C. D. 5.如图,已知矩形AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 路基路面课程设计问题
- 湖北工业大学《设计程序与方法研究》2022-2023学年期末试卷
- 课程设计系统类图
- 湖北工业大学《DataStructure》2023-2024学年期末试卷
- 湖北恩施学院《数据库技术及应用(MYSQL)》2021-2022学年期末试卷
- 课程设计选V带型号
- 结构化烹饪课程设计
- 廉洁风险保证金制度
- 纠正四风工作总结
- 话术逻辑训练课程设计
- 车辆运输保障方案
- 中医药纳米技术与缓控释制剂
- 用车安全培训资料
- 食品生产企业食品安全风险日管控、周排查、月调度工作制度
- 《四川九寨沟》课件
- 《员工晋升管理》课件
- 防校园欺凌家长会
- 中国老年糖尿病诊疗指南(2024版)解读
- Music-中西方音乐的区别
- 新生儿家庭式护理
- 职工履历表简介
评论
0/150
提交评论