版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、题在精不在多,请充分发挥您的钻研精神于各种“好题”! 专注一对一辅导 学海教育!PAGE |初一数学基础-提高-精英学生版| 第1讲 第页 改善学习方法,保障学习时间确保听懂的题化成“得分”! page PAGE 8 of NUMPAGES 9第3讲基本不等式1基本不等式eq r(ab)eq f(ab,2)(1)基本不等式成立的条件:a0,b0(2)等号成立的条件:当且仅当ab时取等号2算术平均数与几何平均数设a0,b0,则a,b的算术平均数为eq f(ab,2),几何平均数为eq r(ab),基本不等式可叙述为:两个正实数的算术平均数不小于它们的几何平均数3利用基本不等式求最值问题已知x0,
2、y0,则(1)如果积xy是定值p,那么当且仅当xy时,xy有最小值是2eq r(p)(简记:积定和最小)(2)如果和xy是定值p,那么当且仅当xy时,xy有最大值是eq f(p2,4)(简记:和定积最大)做一做1已知a,b(0,),若ab1,则ab的最小值为_;若ab1,则ab的最大值为_2eq f(1,4)1辨明两个易误点(1)使用基本不等式求最值,“一正,二定、三相等”三个条件缺一不可;(2)连续使用基本不等式求最值要求每次等号成立的条件一致2活用几个重要的不等式a2b22ab(a,bR);eq f(b,a)eq f(a,b)2(a,b同号)abeq blc(rc)(avs4alco1(f
3、(ab,2)eq sup12(2)(a,bR);eq blc(rc)(avs4alco1(f(ab,2)eq sup12(2)eq f(a2b2,2)(a,bR)3巧用“拆”“拼”“凑”在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件eq avs4al(考点一)_利用基本不等式证明不等式_规律方法利用基本不等式证明不等式的方法技巧利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等1“a0
4、且b0”是“eq f(ab,2)eq r(ab)”成立的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件A 2若x1,则xeq f(4,x1)的最小值为_5已知a0,b0,ab1,求证:eq blc(rc)(avs4alco1(1f(1,a)eq blc(rc)(avs4alco1(1f(1,b)9.在本例条件下,求证eq f(1,a)eq f(1,b)4.1.设a,b,c都是正数,求证:eq f(bc,a)eq f(ac,b)eq f(ab,c)abc.eq avs4al(考点二)_利用基本不等式求最值(高频考点)_利用基本不等式求最值是高考的常考内容,题型主要为选择题、
5、填空题高考对利用基本不等式求最值的考查常有以下三个命题角度:(1)知和求积的最值;(2)知积求和的最值;(3)求参数的值或范围规律方法利用基本不等式求最值时,要注意其必须满足的三个条件:一正二定三相等(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,必须把构成积的因式的和转化成定值;(3)“三相等”即检验等号成立的条件,判断等号能否取到,只有等号能成立,才能利用基本不等式求最值(1)当0 xm22m恒成立,则实数m的取值范围是()A(,2)4,)B(,42,)C(2,4)D(4,2)(1)eq f(1,16)(2)D(3)D2
6、.(1)当x0时,f(x)eq f(2x,x21)的最大值为_(2)若x0,a1)的图象恒过定点A,若点A在直线eq f(x,m)eq f(y,n)1上,且m,n0,则3mn的最小值为_(4)已知正实数a,b满足a2b1,则a24b2eq f(1,ab)的最小值为_(1)1(2)1(3)16(4)eq f(17,2)eq avs4al(考点三)_利用基本不等式解决实际问题_规律方法应用基本不等式解实际问题的步骤:理解题意,设变量;建立相应的函数关系式,把实际问题抽象成求函数的最大值或最小值问题;在定义域内,求出函数的最大值或最小值;写出正确答案小王大学毕业后,决定利用所学专业进行自主创业经过市
7、场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)eq f(1,3)x2x(万元)在年产量不小于8万件时,W(x)6xeq f(100,x)38(万元)每件产品售价为5元通过市场分析,小王生产的商品能当年全部售完(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润年销售收入固定成本流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?当年产量为10万件时,小王在这一商品的生产中所获利润最大最大利润为15万元2.某养殖厂需定期购买饲料,已知该厂每天需要饲料20
8、0千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元(1)求该厂多少天购买一次饲料才能使平均每天支付的总费用最少;(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时,其价格可享受八五折优惠(即为原价的85%)问:该厂是否应考虑利用此优惠条件?请说明理由3.某化工企业2014年年底投入100万元,购入一套污水处理设备该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元设该企业使用该设备x年的年平均污水处理费用为y(单位:万元)(1)用x表示y;(2
9、)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备,则该企业几年后需要重新更换新的污水处理设备该企业10年后需要重新更换新的污水处理设备考题溯源基本不等式的实际应用(2014高考福建卷)要制作一个容积为4 m3,高为1 m的无盖长方体容器已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_(单位:元)160如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB3米,AD2米(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN的长度为多少时,矩
10、形花坛AMPN的面积最小?并求出最小值DN长的取值范围是eq blc(rc)(avs4alco1(0,f(2,3)(6,)(单位:米)x2时,矩形花坛的面积最小,为24平方米1(2015青岛模拟)设a,bR,已知命题p:a2b22ab;命题q:eq blc(rc)(avs4alco1(f(ab,2)eq sup12(2)eq f(a2b2,2),则p是q成立的()A必要不充分条件B充分不必要条件C充要条件 D既不充分也不必要条件选B2(2015上海黄浦模拟)已知a,bR,且ab0,则下列结论恒成立的是()Aab2eq r(ab) B.eq f(a,b)eq f(b,a)2C.eq blc|rc
11、|(avs4alco1(f(a,b)f(b,a)2 Da2b22ab选C.3若2x2y1,则xy的取值范围是()A0,2 B2,0C2,) D(,2选D 4(2015湖北黄冈模拟)设a1,b0,若ab2,则eq f(1,a1)eq f(2,b)的最小值为()A32eq r(2) B6C4eq r(2) D2eq r(2)选A.(2015山东青岛质检)在实数集R中定义一种运算“*”,对任意a,bR,a*b为唯一确定的实数, 且具有性质:(1)对任意aR,a*0a;(2)对任意a,bR,a*bab(a*0)(b*0)则函数f(x)(ex)*eq f(1,ex)的最小值为()A2 B3C6 D8选B
12、.6已知各项为正的等比数列an中,a4与a14的等比中项为2eq r(2),则2a7a11的最小值为_87某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为yx218x25(xN*)则当每台机器运转_年时,年平均利润最大,最大值是_万元588已知a,bR,且ab50,则|a2b|的最小值是_209(1)当xeq f(3,2)时,求函数yxeq f(8,2x3)的最大值;(2)设0 x0,y0,且2x8yxy0,求(1)xy的最小值;(2)xy的最小值xy的最小值为64.xy的最小值为18.1不等式x2x0,b0,方程为x2
13、y24x2y0的曲线关于直线axby10对称,则eq f(3a2b,ab)的最小值为_4eq r(3)74(2014高考湖北卷)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒),平均车长l(单位:米)的值有关,其公式为Feq f(76 000v,v218v20l).(1)如果不限定车型,l6.05,则最大车流量为_辆/时;(2)如果限定车型,l5,则最大车流量比(1)中的最大车流量增加_辆/时(1)1 900(2)1005已知x0,y0,且2x5y20.求:(1)ulg xlg y的最大值;
14、(2)eq f(1,x)eq f(1,y)的最小值lg xlg y有最大值1.eq f(1,x)eq f(1,y)的最小值为eq f(72r(10),20).6(选做题)首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为yeq f(1,2)x2200 x80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元(1)该单位每月处理量为多少吨时,才能使每吨的
15、平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?最低成本为200元该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损对勾函数f(x)=ax+ QUOTE 的图象与性质对勾函数是数学中一种常见而又特殊的函数。它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+ QUOTE (接下来写作f(x)=ax+b/x)。当a0,b0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。这个观点,对于理解它的性质,绘制它的图象,非常重要。当a,b同号时,f(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目承包合同
- 公益性岗位传统技艺保护合同
- 借款合同参考
- 桥梁建设设备租赁合同
- 业务保险合同
- 设备租赁合同法律审查报告
- 基础设施贷款协议模板
- 写字楼租赁节能合同
- 2024至2030年软木垫片项目投资价值分析报告
- 2024至2030年中国电话接口模块行业投资前景及策略咨询研究报告
- 2024届江苏省南通市海门市海门中学高一物理第一学期期中统考试题含解析
- 政治思想品德考核表
- 翅片冲床作业指导书
- 工程款请款单
- 供货及运输、安全保障措施
- 单亲家庭儿童团体辅导记录
- 人教版九年级物理全一册全册完整课件
- 2023年基金从业资格考试《基金法律法规、职业道德与业务规范》辅导教材
- 习作:让生活更美好课件
- 篆刻体验活动问印社宣传PPt解析课件
- 大学生创新创业理论及实践PPT完整全套教学课件
评论
0/150
提交评论