




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1用配方法解方程,变形后的结果正确的是( )ABCD2从这七个数中随机抽取一个数记为,则的值是不等式组的解,但不是方程的实数解的概率为( )ABCD3如图,在正方形中,绕点顺时针旋转后与重合,则的长度为( )A4BC5D4如图,函数的图象与轴的一个交点坐
2、标为(3,0),则另一交点的横坐标为( )A4B3C2D15一人乘雪橇沿如图所示的斜坡(倾斜角为30)笔直滑下,滑下的距离为24米,则此人下滑的高度为( )A24BC12D66如图在ABC中,点D、E分别在ABC的边AB、AC上,不一定能使ADE与ABC相似的条件是( )AAED=BBADE=CCD7一个不透明的盒子有n个除颜色外其它完全相同的小球,其中有12 个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A20B30C40D508已知O的直径为4,点O到直线l的距离为2,则直
3、线l与O的位置关系是A相交B相切C相离D无法判断9在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( )ABCD10下列两个图形,一定相似的是()A两个等腰三角形B两个直角三角形C两个等边三角形D两个矩形二、填空题(每小题3分,共24分)11函数的自变量的取值范围是 12如图,在中,将绕点逆时针旋转得到,连接,则的长为_.13已知x1是方程x22mx30的一个根,则该方程的另一个根为_14观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_个15抛物线的对称轴是_16已知AOB60,
4、OC是AOB的平分线,点D为OC上一点,过D作直线DEOA,垂足为点E,且直线DE交OB于点F,如图所示若DE2,则DF_17如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90,180,270后形成的图形若BAD=60,AB=2,则图中阴影部分的面积为 18河北省赵县的赵州桥的拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO为4m时,这时水面宽度AB 为_. 三、解答题(共66分)19(10分)某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量(件)与销售单价( 元/件 )的关系如下表:15202530550500450
5、400设这种产品在这段时间内的销售利润为(元),解答下列问题:(1)如是的一次函数,求与的函数关系式;(2)求销售利润与销售单价之间的函数关系式;(3)求当为何值时,的值最大?最大是多少?20(6分)如图,在中,以为原点所在直线为轴建立平面直角坐标系,的顶点在反比例函数的图象上.(1)求反比例函数的解析式:(2)将向右平移个单位长度,对应得到,当函数的图象经过一边的中点时,求的值.21(6分)如图,在中, 点是边上一点,连接,以为边作等边.如图1,若求等边的边长;如图2,点在边上移动过程中,连接,取的中点,连接,过点作于点.求证:;如图3,将沿翻折得,连接,直接写出的最小值.22(8分)动画片
6、小猪佩奇分靡全球,受到孩子们的喜爱.现有4张小猪佩奇角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.23(8分)如图1:在RtABC中,ABAC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论小明同学的思路是这样的:将线段AD绕点A逆时针旋转90,得到线段AE,连接EC,DE
7、继续推理就可以使问题得到解决(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在RtABC中,ABAC,D为ABC外的一点,且ADC45,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是O的直径,点C,D是O上的点,且ADC45若AD6,BD8,求弦CD的长为 ;若AD+BD14,求的最大值,并求出此时O的半径24(8分)矩形中,线段绕矩形外一点顺时针旋转,旋转角为,使点的对应点落在射线上,点的对应点在的延长线上(1)如图1,连接、,则与的大小关系为_(2)如图2,当点位于线段上时,求证:;(3)如图3
8、,当点位于线段的延长线上时,求四边形的面积25(10分)关于x的一元二次方程有两个不相等的实数根(1)求k的取值范围(2)请选择一个k的负整数值,并求出方程的根26(10分)先化简,再求值:,其中x1参考答案一、选择题(每小题3分,共30分)1、D【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】,所以,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.2、B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】解得,解得,的值是不等式组的解,方程,解得,不是方程的解,或满足条件的的值为,(
9、个)概率为故选3、D【分析】先根据旋转性质及正方形的性质构造方程求正方形的边长,再利用勾股定理求值即可.【详解】绕点顺时针旋转后与重合四边形ABCD为正方形在中,故选D.【点睛】本题考查了全等三角形的性质、旋转的性质、正方形的性质、勾股定理,找到直角三角形运用勾股定理求值是解题的关键.4、D【分析】根据到函数对称轴距离相等的两个点所表示的函数值相等可求解【详解】根据题意可得:函数的对称轴直线x=1,则函数图像与x轴的另一个交点坐标为(1,0)故横坐标为-1,故选D考点:二次函数的性质5、C【分析】由题意运用解直角三角形的方法根据特殊三角函数进行分析求解即可.【详解】解:因为斜坡(倾斜角为30)
10、,滑下的距离即斜坡长度为24米,所以下滑的高度为米.故选:C.【点睛】本题考查解直角三角形相关,结合特殊三角函数进行求解是解题的关键,也可利用含30的直角三角形,其斜边是30角所对直角边的2倍进行分析求解.6、C【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可【详解】解:A、AED=B,A=A,则可判断ADEACB,故A选项错误;B、ADE=C,A=A,则可判断ADEACB,故B选项错误;C、不能判定ADEACB,故C选项正确;D、,且夹角A=A,能确定ADEACB,故D选项错误故选:C【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键7、C【
11、分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值即可.【详解】根据题意得:,解得n=40,所以估计盒子中小球的个数为40个.故选C【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,概率=所求情况数与总情况数之比熟练掌握概率公式是解题关键.8、B【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系【详解】O的直径为4,O的半径为2,圆心O到直线l的距离是2,根据圆心距与半径之间的数量关系可知直线l与O的位置关系是相切故选:B【点睛】本题
12、考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当dr时,直线和圆相切,当dr时,直线和圆相离,当dr时,直线和圆相交9、D【分析】根据题意即从5个球中摸出一个球,概率为.【详解】摸到红球的概率=,故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.10、C【解析】根据相似三角形的判定方法 一一判断即可;所应用判断方法:两角对应相等,两三角形相似.【详解】解:两个等边三角形的内角都是60,两个等边三角形一定相似,故选C【点睛】本题考查相似三角形的判定,解题
13、的关键是熟练掌握基本知识,属于中考常考题型二、填空题(每小题3分,共24分)11、x1【详解】解:依题意可得,解得,所以函数的自变量的取值范围是12、1【分析】由旋转的性质可得ACAC13,CAC160,由勾股定理可求解【详解】将ABC绕点A逆时针旋转60得到AB1C1,ACAC13,CAC160,BAC190,BC11,故答案为:1【点睛】本题考查了旋转的性质,勾股定理,熟练旋转的性质是本题的关键13、1【分析】根据根与系数的关系即可求出答案【详解】解:设另外一个根为x,由根与系数的关系可知:x1,x1,故答案为:1【点睛】本题考查了一元二次方程根与系数的关系,熟知根与系数的关系是解题的关键
14、14、1【解析】根据题目中的图形,可以发现的变化规律,从而可以得到第2019个图形中的个数【详解】由图可得,第1个图象中的个数为:,第2个图象中的个数为:,第3个图象中的个数为:,第4个图象中的个数为:,第2019个图形中共有:个,故答案为:1【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中的变化规律,利用数形结合的思想解答15、【分析】根据二次函数yax2bxc(a0)的对称轴是直线x计算【详解】抛物线y2x224x7的对称轴是:x1,故答案为:x1【点睛】本题考查的是二次函数的性质,掌握二次函数yax2bxc(a0)的对称轴是直线x是解题的关键16、1【分析】过点D作DM
15、OB,垂足为M,则DM=DE=2,在RtOEF中,利用三角形内角和定理可求出DFM=30,在RtDMF中,由30角所对的直角边等于斜边的一半可求出DF的长,此题得解【详解】过点D作DMOB,垂足为M,如图所示OC是AOB的平分线,DMDE2在RtOEF中,OEF90,EOF60,OFE30,即DFM30在RtDMF中,DMF90,DFM30,DF2DM1故答案为1【点睛】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30角所对的直角边等于斜边的一半,求出DF的长是解题的关键17、124【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM
16、,MN,DN,将菱形ABCD以点O为中心按顺时针方向分别旋转90,180,270后形成的图形,BAD=60,AB=2,ACBD,四边形DNMF是正方形,AOC=90,BD=2,AE=EC=,AOE=45,ED=1,AE=EO=,DO=1,S正方形DNMF=2(1)2(1)=84,SADF=ADAFsin30=1,则图中阴影部分的面积为:4SADF+S正方形DNMF=4+84=124故答案为124考点:1、旋转的性质;2、菱形的性质18、【详解】根据题意B的纵坐标为4,把y=4代入y=x2,得x=10,A(10,4),B(10,4),AB=20m即水面宽度AB为20m三、解答题(共66分)19、
17、(1);(2);(3)当时,的值最大,最大值为9000元【分析】(1)根据待定系数法即可求出一次函数解析式;(2)根据题意列出二次函数即可求解;(3)根据二次函数的性质即可得到最大值.【详解】(1)设与的函数关系式为y=kx+b把(15,550)、(20,500)代入得解得(2)成本为10元,故每件利润为(x-10)销售利润(3)=-100,当时,的值最大,最大值为9000元.【点睛】本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键20、(1);(2)值有或【分析】(1)过点作于点,根据,可求出AOB的面积8,由等腰三角形的三线合一可知AOD的面积为4,根据反比例函数k的
18、几何意义几何求出k;(2)分两种情况讨论:当边的中点在的图象上,由条件可知,即可得到C点坐标为,从而可求得m;当边的中点在的图象上,过点作于点,由条件可知,因此中点,从而可求得m【详解】解:(1)过点作于点,如图1,即(2)当边的中点在的图象上,如图2,点,即当边的中点在的图象上,过点作于点,如图3,中点即综上所述,符合条件的值有或【点睛】本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键21、(1);(2)证明见解析;(3)最小值为【分析】(1)过C做CFAB,垂足为F,由题意可得B=30,用正切函数可求CF的长,再用正弦函数即可求解;(
19、2) 如图(2)1:延长BC到G使CG=BC,易得CGECAD,可得CFGE,得CFA=90,CF=GE再证DG=AD,得CF=DG,可得四边形DGFC是矩形即可;(3)如图(2)2:设ED与AC相交于G,连接FG,先证EDFF DB得BD=DE,当DE最大时最小,然后求解即可;【详解】解:(1)如图:过C做CFAB,垂足为F,A=B=30,BF=3tanB= CF=又sinCDB= sin45= DC=等边的边长为;如图(2)1:延长BC到G使CG=BCACB=120GCE=180-120=60,A=B=30又ACB=60GCE= ACD又CE=CDCGECAD(SAS)G= A=30,GE
20、=AD又EF=FBGEFC, GE=FC,BCF=G=30ACF=ACB-BCF=90CFDG A=30GD=AD,CF=DG四边形DGFC是平行四边形,又ACF=90四边形DGFC是矩形,)如图(2)2:设ED与AC相交于G,连接FG由题意得:EF=BF, EFD=DFB EDFF DBBD=DEBD=CD当BD取最小值时,有最小值当CDAB时,BDmin=AC,设CDmin=a,则AC=BC=2a,AB=2a 的最小值为;【点睛】本题属于几何综合题,考查了矩形的判定、全等三角形的判定、直角三角形的性质等知识点;但本题知识点比较隐蔽,正确做出辅助线,发现所考查的知识点是解答本题的关键.22、
21、(1);(2) 【解析】(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答【详解】(1);(2)方法1:根据题意可画树状图如下: 方法2:根据题意可列表格如下: 弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).P(姐姐抽到A佩奇,弟弟抽到B乔治)【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能
22、的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比23、(1)CD2+BD22AD2,见解析;(2)BD2CD2+2AD2,见解析;(3)7,最大值为,半径为【分析】(1)先判断出BADCAE,进而得出ABDACE,得出BDCE,BACE,再根据勾股定理得出DE2CD2+CE2CD2+BD2,在RtADE中,DE2AD2+AE22AD2,即可得出结论;(2)同(1)的方法得,ABDACE(SAS),得出BDCE,再用勾股定理的出DE22AD2,CE2CD2+DE2CD2+2AD2,即可得出结论;(3)先根据勾股定理的出DE2
23、CD2+CE22CD2,再判断出ACEBCD(SAS),得出AEBD,将AD6,BD8代入DE22CD2中,即可得出结论;先求出CD7,再将AD+BD14,CD7代入,化简得出(AD)2+,进而求出AD,最后用勾股定理求出AB即可得出结论【详解】解:(1)CD2+BD22AD2,理由:由旋转知,ADAE,DAE90BAC,BADCAE,ABAC,ABDACE(SAS),BDCE,BACE,在RtABC中,ABAC,BACB45,ACE45,DCEACB+ACE90,根据勾股定理得,DE2CD2+CE2CD2+BD2,在RtADE中,DE2AD2+AE22AD2,CD2+BD22AD2;(2)B
24、D2CD2+2AD2,理由:如图2,将线段AD绕点A逆时针旋转90,得到线段AE,连接EC,DE,同(1)的方法得,ABDACE(SAS),BDCE,在RtADE中,ADAE,ADE45,DE22AD2,ADC45,CDEADC+ADE90,根据勾股定理得,CE2CD2+DE2CD2+2AD2,即:BD2CD2+2AD2;(3)如图3,过点C作CECD交DA的延长线于E,DCE90,ADC45,E90ADC45ADC,CDCE,根据勾股定理得,DE2CD2+CE22CD2,连接AC,BC,AB是O的直径,ACBADB90,ADC45,BDC45ADC,ACBC,DCEACB90,ACEBCD,ACEBCD(SAS),AEBD,AD6,BD8,DEAD+AEAD+BD14,2CD2142,CD7,故答案为7;AD+BD14,CD7,AD(BD+7)AD(BD+7)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年茶艺师职业技能鉴定理论试卷(茶艺师职业培训师资培训报告)
- 2025年电梯安装改造维修作业特种作业操作证考试试卷(电梯安全)事故案例分析
- 低碳城市案例研究:2025年城市规划与城市更新策略
- 帕力亚多骆驼乳粉知识测试题
- 2025年基因治疗药物临床研发新趋势:市场前景与产业布局分析报告
- 2025年高性能铁氧体一次磁粉项目规划申请报告
- 汽车工程原理及技术案例分析题
- 2025年防雷工程项目立项申请报告
- 金融大数据在反欺诈中的机器学习应用报告2025
- 2025年社交媒体平台文化影响力报告:热点事件与舆论引导效应
- 服务标准化指标的量化与评价
- 维修结算单完整版本
- (正式版)JBT 14790-2024 往复式内燃机曲轴转角 信号盘
- 勘察设计工作量及计划安排方案
- T-CSEM 0024-2024 智慧消防 火灾防控系统建设要求
- 颈部血肿的应急预案
- 呛咳病人的护理措施
- 2023年北京中储粮集团招聘考试真题及答案
- 智能问答系统课件
- 爱德华消防主机更换烟感编程
- 【公开课教案】《蹲踞式起跑》教案
评论
0/150
提交评论