2023学年河北省廊坊市5月份九年级数学第一学期期末复习检测试题含解析_第1页
2023学年河北省廊坊市5月份九年级数学第一学期期末复习检测试题含解析_第2页
2023学年河北省廊坊市5月份九年级数学第一学期期末复习检测试题含解析_第3页
2023学年河北省廊坊市5月份九年级数学第一学期期末复习检测试题含解析_第4页
2023学年河北省廊坊市5月份九年级数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,四边形ABCD是矩形,BC4,AB2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GHBC交AB于点G,交DC于点H,EFAB交AD于点E,交BC于点F,AH交EF于点M设BFx,MNy,则y关于x的函数图象是()ABCD2一次函数

2、y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()ABCD3方程的解是( )ABC或D或4已知点(1,y1)、(2,y2)、(,y3)在双曲线上,则下列关系式正确的是( )Ay1y2y3By1y3y2Cy2y1y3Dy3y1y25如图,正方形中,点、分别在边,上,与交于点.若,则的长为( )ABCD6西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表。如图是一个根据北京的地理位置设计的圭表,其中,立柱的高为。已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)作为( )ABCD7两个

3、相似三角形,其面积比为16:9,则其相似比为()A16:9B4:3C9:16D3:48如图,A、B、C、D、E相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是( )AB1.5C2D2.59如图,在ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:AEDB;DEBC;ADBCDEAC;ADEC,能满足ADEACB的条件有( )A1个B2C3个D4个10如图,在由边长为1的小正方形组成的网格中,点,都在格点上,点在的延长线上,以为圆心,为半径画弧,交的延长线于点,且弧经过点,则扇形的面积为( )ABCD二、填空题(每小题3分,共24

4、分)11如图,在ABC中,AC:BC:AB3:4:5,O沿着ABC的内部边缘滚动一圈,若O的半径为1,且圆心O运动的路径长为18,则ABC的周长为_12如图,ABP是由ACD按顺时针方向旋转某一角度得到的,若BAP60,则在这一旋转过程中,旋转中心是_,旋转角度为_. 13某数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1m的竹竿的影长为0.5m,同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,其中,落在墙壁上的影长为0.8m,落在地面上的影长为4.4m,则树的高为_m.14在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外其它

5、都相同,任意摸出一个球,摸到黑球的概率是_15如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为,则这个正方形的边长为_16数学学习应经历“观察、实验、猜想、证明”等过程.下表是几位数学家“抛掷硬币”的实验数据:实验者棣莫弗蒲丰德摩根费勒皮尔逊罗曼诺夫斯基掷币次数204840406140100003600080640出现“正面朝上”的次数10612048310949791803139699频率0.5180.5070.5060.4980.5010.492请根据以上实验数据,估计硬币出现“正面朝上”的概率为_(精确到0.1)17如图,在RtABC中,ABC=90,AB=1,BC=

6、,将ABC绕点顶C顺时针旋转60,得到MNC,连接BM,则BM的长是_18如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x22x3,求这个“果圆”被y轴截得的线段CD的长.三、解答题(共66分)19(10分)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线ya(x+3)(x1)(a0)与x轴交于A,B两点(点A在点B的左侧)(1)求点A与点B的坐标;(2)若a,点M是抛物线上一动点,若满足MAO不大于45,求点M的横坐标m的取值范围(3)经过点B的直线l:ykx+b与y轴正半轴交于点C

7、与抛物线的另一个交点为点D,且CD4BC若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由20(6分)如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0t6),那么:(1)当t为何值时,QAP是等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与ABC相似?21(6分)计算:;22(8分)如图所示,在矩形OABC中,OA=5,AB=4,点D为边AB上一

8、点,将BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系(1)求OE的长(2)求经过O,D,C三点的抛物线的解析式(3)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动设运动时间为t秒,当t为何值时,DP=DQ(4)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,直接写出M点的坐标;若不存在,请说明理由23(8分)对于平面直角坐标系中,已知点A

9、(-2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45APB90时,则称点P为线段AB的可视点,且当PAPB时,称点P为线段AB的正可视点图1 备用图(1) 如图1,在点P1(3,6),P2(-2,-5),P3(2,2)中,线段AB的可视点是 ;若点P在y轴正半轴上,写出一个满足条件的点P的坐标:_(2)在直线yx+b上存在线段AB的可视点,求b的取值范围;(3)在直线y-x+m上存在线段AB的正可视点,直接写出m的取值范围24(8分)如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象交于点,两点.(1)求一次函数的表达式及点的坐标;(2)点是第四象限内反

10、比例函数图象上一点,过点作轴的平行线,交直线于点,连接,若,求点的坐标25(10分)如图,、交于点,且平分(1)求证:;(2)若,求的长26(10分)在学习“轴对称现象”内容时,老师让同学们寻找身边的轴对称图形,小明利用手中的一副三角尺和一个量角器(如图所示)进行探究(1)小明在这三件文具中任取一件,结果是轴对称图形的概率是_;(取三件中任意一件的可能性相同)(2)小明发现在、两把三角尺中各选一个角拼在一起(无重叠无缝隙)会得到一个更大的角,若每个角选取的可能性相同,请用画树状图或列表的方法说明拼成的角是钝角的概率是多少参考答案一、选择题(每小题3分,共30分)1、B【分析】求出 ,yEFEM

11、NF2BFtanDBCAEtanDAH,即可求解【详解】解:,yEFEMNF2BFtanDBCAEtanDAH2xx()x2x+2,故选:B【点睛】本题考查的是动点图象问题,涉及到二次函数,此类问题关键是确定函数的表达式,进而求解2、B【解析】根据题中给出的函数图像结合一次函数性质得出a0,b0,再由反比例函数图像性质得出c0,从而可判断二次函数图像开口向下,对称轴:0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【详解】解:一次函数y=ax+b图像过一、二、四, a0,b0, 又反比例 函数y=图像经过二、四象限, c0, 二次函数对称轴:0, 二次函数y=ax2+bx+c图像开口向下,

12、对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键3、C【解析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:,x1=0或x2=0,解得:或.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.4、B【解析】分析:根据题意,可得这个反比例函数图象所在的象限及每个象限的增减性,比较三个点的纵横坐标,分析可得三点纵坐标的大小,即可得答案详解

13、:双曲线中的-(k1+1)0,这个反比例函数在二、四象限,且在每个象限都是增函数,且10时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大.5、A【分析】根据正方形的性质以及勾股定理求得,证明,根据全等三角形的性质可得,继而根据,可求得CG的长,进而根据即可求得答案.【详解】四边形ABCD是正方形,在和中,故选A.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,三角函数等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.6、D【解析】在RtAB

14、C中利用正切函数即可得出答案【详解】解:在RtABC中,tanABC=,立柱根部与圭表的冬至线的距离(即BC的长)为=故选:D【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答7、B【分析】根据两个相似多边形的面积比为16:9,面积之比等于相似比的平方【详解】根据题意得:即这两个相似多边形的相似比为4:1故选:B【点睛】本题考查了相似多边形的性质相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方8、B【分析】本题考查的是扇形面积,圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积公式计算即可【详解】图中五个扇形(阴影部分)的面积是,

15、故选B.9、D【分析】根据相似三角形的判定定理判断即可【详解】解:由AED=B,A=A,则可判断ADEACB;DEBC,则有AED=C,ADE=B,则可判断ADEACB;,A=A,则可判断ADEACB;ADBCDEAC,可化为,此时不确定ADE=ACB,故不能确定ADEACB;由ADE=C,A=A,则可判断ADEACB;所以能满足ADEACB的条件是:,共4个,故选:D【点睛】此题考查了相似三角形的判定,关键是掌握相似三角形的三种判定定理10、B【分析】连接AC,根据网格的特点求出r=AC的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC,则r=AC=扇形的圆心角度数为

16、BAD=45,扇形的面积=故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.二、填空题(每小题3分,共24分)11、4【分析】如图,首先利用勾股定理判定ABC是直角三角形,由题意得圆心O所能达到的区域是DEG,且与ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AGAH,PCCQ,BNBM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DEGP,EFQN,DFHM,DEGP,DFHM,EFQN,PEF90,根据题

17、意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得DEFACB,根据相似三角形的性质可知:DEEFFDACCBBA341,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AGAHx,BNBMy,根据线段的和差表示出AC、BC、AB的长,进而根据ACCBBA341列出比例式,继而求出x、y的值,进而即可求解ABC的周长【详解】ACCBBA341,设AC3a,CB4a,BA1a(a0)ABC是直角三角形,设O沿着ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,

18、连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AGAH,PCCQ,BNBMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,DGEP,EQFN,FMDH,O的半径为1DGDHPEQEFNFM1,则有矩形DEPG、矩形EQNF、矩形DFMH,DEGP,EFQN,DFHM,DEGP,DFHM,EFQN,PEF90又CPECQE90, PEQE1四边形CPEQ是正方形,PCPEEQCQ1,O的半径为1,且圆心O运动的路径长为18,DE+EF+DF18,DEAC,DFAB,EFBC,DEFACB,DFEABC,DEFABC,DE:EF:DFAC:BC:AB3:4

19、:1,设DE3k(k0),则EF4k,DF1k,DE+EF+DF18,3k+4k+1k18,解得k, DE3k,EF4k6,DF1k,根据切线长定理,设AGAHx,BNBMy,则ACAG+GP+CPx+1x+11,BCCQ+QN+BN1+6+yy+2,ABAH+HM+BMx+yx+y+21,AC:BC:AB3:4:1,(x+11):(y+2):(x+y+21)3:4:1,解得x2,y3,AC21,BC10,AB31,AC+BC+AB4所以ABC的周长为4故答案为4【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆

20、心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点12、, 【分析】根据条件得出AD=AP,AC=AB,确定旋转中心,根据条件得出DAP=CAB=90,确定旋转角度数.【详解】解:ABP是由ACD按顺时针方向旋转而得,ABPACD,DAC=PAB=60,AD=AP,AC=AB,DAP=CAB=90,ABP是ACD以点A为旋转中心顺时针旋转90得到的.故答案为:A,90【点睛】本题考查旋转的性质,明确旋转前后的图形大小和形状不变,正确确定对应角,对应边是解答此题的关键.13、9.2【分析】由题意可知在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的

21、两个直角三角形相似经过树在教学楼上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上墙上的影高就是树高【详解】解:设从墙上的影子的顶端到树的顶端的垂直高度是x米则有,解得x=1.1树高是1.1+0.1=9.2(米)故答案为:9.2【点睛】本题考查相似三角形的应用,解题的关键是从复杂的数学问题中整理出三角形并利用相似三角形求解.14、【解析】袋子中一共有3个球,其中有2个黑球,根据概率公式直接进行计算即可.【详解】袋子中一共有3个球,其中有2个黑球,所以任意摸出一个球,摸到黑球的概率是,故答案为:.【点睛】本题考

22、查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.15、【分析】将ABE绕点A旋转60至AGF的位置,根据旋转的性质可证AEF和ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+ECGC,表示RtGMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将ABE绕点A旋转60至AGF的位置,连接EF,GC,BG,过点G作BC 的垂线交CB的延长线于点M.设正方形的边长为2m,四边形ABCD为正方形,AB=BC=2m,ABC=ABM=90,ABE绕点A旋转60至AGF,,AEF和ABG为等边三角形,AE=EF,ABG=60,E

23、A+EB+EC=GF+EF+ECGC,GC=,GBM=90-ABG =30,在RtBGM中,GM=m,BM=,RtGMC中,勾股可得,即:,解得:,边长为.故答案为:.【点睛】本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+ECGC是解决此题的关键.16、0.1【分析】由于表中硬币出现“正面朝上”的频率在0.1左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率为0.1【详解】解:因为表中硬币出现“正面朝上”的频率在0.1左右波动,所以估计硬币出现“正面朝上”的概率为0.1故答

24、案为0.1【点睛】本题考查了利用频率估计概率,随实验次数的增多,值越来越精确17、【分析】由旋转的性质得:CA=CM,ACM=60,由三角比可以求出ACB=30,从而BCM=90,然后根据勾股定理求解即可【详解】解:由旋转的性质得:CA=CM,ACM=60,ABC=90,AB=1,BC=,tanACB=,CM=AC=,ACB=30,BCM=90,BM=故答案为:【点睛】本题考查了图形的变换-旋转,锐角三角函数,以及勾股定理等知识,准确把握旋转的性质是解题的关键18、这个“果圆”被y轴截得的线段CD的长3+ 【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO

25、的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长【详解】连接AC,BC,抛物线的解析式为y=(x-1)2-4,点D的坐标为(0,3),OD的长为3,设y=0,则0=(x-1)2-4,解得:x=1或3,A(1,0),B(3,0)AO=1,BO=3,AB为半圆的直径,ACB=90,COAB,CO2=AOBO=3,CO=,CD=CO+OD=3+,故答案为3+.三、解答题(共66分)19、(1)A(3,0),B(1,0);(2)M(4,7);2m4;(3)点P的坐标为P(1,4)或(1,)【分析】(1)ya(x+3)(x1),令y0,则x1或3,即可求解;(2)分MAO=45

26、,MAO=45两种情况,分别求解即可;(3)分当BD是矩形的边, BD是矩形的边两种情况,分别求解即可【详解】(1)ya(x+3)(x1),令y0,则x1或3,故点A、B的坐标分别为:(3,0),(1,0);(2)抛物线的表达式为:y(x+3)(x1),当MAO45时,如图所示,则直线AM的表达式为:yx,联立并解得:mx4或3(舍去3),故点M(4,7);MAO45时,同理可得:点M(2,1);故:2m4;(3)当BD是矩形的对角线时,如图2所示,过点Q作x轴的平行线EF,过点B作BEEF,过点D作DFEF,抛物线的表达式为:yax2+2ax3a,函数的对称轴为:x1,抛物线点A、B的坐标分

27、别为:(3,0)、(1,0),则点P的横坐标为:1,OB1,而CD4BC,则点D的横坐标为:4,故点D(4,5a),即HD5a,线段BD的中点K的横坐标为:,则点Q的横坐标为:2,则点Q(2,3a),则HFBE3a,DQF+BQE90,BQE+QBE90,QBEDQF,DFQQEB,则,解得:a(舍去负值),同理PGBDFQ(AAS),PGDF8a4,故点P(1,4);如图3,当BD是矩形的边时,作DIx轴,QNx轴,过点P作PLDI于点L,同理PLDBNQ(AAS),BNPL3,点Q的横坐标为4,则点Q(4,21a),则QNDL21a,同理PLDDIB,即,解得:a(舍去负值),LI26a,

28、故点P(1, );综上,点P的坐标为:P(1,4)或(1, )【点睛】本题主要考查的是二次函数综合运用,涉及到矩形的性质、图形的全等和相似等,其中(2)、(3),要注意分类求解,避免遗漏20、(1)t=2s;(2)t=1.2s或3s【分析】(1)根据等腰三角形的性质可得QA=AP,从而可以求得结果;(2)分与两种情况结合相似三角形的性质讨论即可.【详解】(1)由QA=AP,即6-t=2t, 得t=2 (秒);(2)当时,QAPABC,则,解得t=1.2(秒)当时,QAPABC,则,解得t=3(秒)当t=1.2或3时,QAPABC.21、1【分析】根据特殊角的三角函数值代入即可求解.【详解】【点

29、睛】此题主要考查实数的计算,解题的关键是熟知特殊角的三角函数值.22、(1)3;(2);(3)t=;(1)存在,M点的坐标为(2,16)或(-6,16)或【分析】(1)由矩形的性质以及折叠的性质可求得CE、CO的长,在RtCOE中,由勾股定理可求得OE的长;(2)设AD=m,在RtADE中,由勾股定理列方程可求得m的值,从而得出D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;(3)用含t的式子表示出BP、EQ的长,可证明DBPDEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-3),设N(-2,n),M(m,y),分以下三种情况:以EN为对角线,根据

30、对角线互相平分,可得CM的中点与EN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;当EM为对角线,根据对角线互相平分,可得CN的中点与EM的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;当CE为对角线,根据对角线互相平分,可得CE的中点与MN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案【详解】解:(1)OABC为矩形,BC=AO=5,CO=AB=1又由折叠可知,;(2)设AD=m,则DE=BD=1-m,OE=3,AE=5-3=2,在RtADE中,AD2+AE2=DE2,m2+22=(1-m

31、)2,m=,D,该抛物线经过C(-1,0)、O(0,0),设该抛物线解析式为,把点D代入上式得,a=,;(3)如图所示,连接DP、DQ由题意可得,CP=2t,EQ=t,则BP=5-2t当DP=DQ时,在RtDBP和RtDEQ中,RtDBPRtDEQ(HL),BP=EQ,5-2t=t,t=故当t=时,DP=DQ;(1)抛物线的对称轴为直线x=-2,设N(-2,n),又由(2)可知C(-1,0),E(0,-3),设M(m,y),当EN为对角线,即四边形ECNM是平行四边形时,如图1,则线段EN的中点横坐标为=-1,线段CM的中点横坐标为,EN,CM互相平分,=-1,解得m=2,又M点在抛物线上,y

32、=22+2=16,M(2,16);当EM为对角线,即四边形ECMN是平行四边形时,如图2,则线段EM的中点横坐标为,线段CN中点横坐标为,EM,CN互相平分,m=-3,解得m=-6,又M点在抛物线上,M(-6,16);当CE为对角线,即四边形EMCN是平行四边形时,如图3,线段CE的中点的横坐标为=-2,线段MN的中点的横坐标为,CE与MN互相平分,解得m=-2,当m=-2时,y=,即M综上可知,存在满足条件的点M,其坐标为(2,16)或(-6,16)或【点睛】本题是二次函数的综合题,涉及待定系数法求二次函数解析式、全等三角形的判定和性质、折叠的性质、矩形的性质以及平行四边形的性质等知识,解题的关键是学会利用参数构建方程解决问题,第(1)小题注意分类讨论思想的应用23、(1)线段AB的可视点是,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论