2023学年山东省济宁邹城县联考数学九年级第一学期期末统考试题含解析_第1页
2023学年山东省济宁邹城县联考数学九年级第一学期期末统考试题含解析_第2页
2023学年山东省济宁邹城县联考数学九年级第一学期期末统考试题含解析_第3页
2023学年山东省济宁邹城县联考数学九年级第一学期期末统考试题含解析_第4页
2023学年山东省济宁邹城县联考数学九年级第一学期期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1一条排水管的截面如图所示,已知排水管的半径,水面宽,则截面圆心到水面的距离是( )A3B4CD82(11大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每

2、公顷产量的两组数据,其方差分别为s甲20.002、s乙20.03,则 ( )A甲比乙的产量稳定B乙比甲的产量稳定C甲、乙的产量一样稳定D无法确定哪一品种的产量更稳定3已知,下列变形错误的是( )ABCD4从拼音“nanhai”中随机抽取一个字母,抽中a的概率为( )ABCD5等腰三角形的一边长等于4,一边长等于9,则它的周长是( )A17B22C17或22D136已知抛物线与轴没有交点,那么该抛物线的顶点所在的象限是( )A第一象限B第二象限C第三象限D第四象限7从一个装有3个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球,两次摸到的都是红球的概

3、率是( )ABCD8如图,在边长为1的小正方形网格中,点都在这些小正方形的顶点上,则的余弦值是( )ABCD9已知一个圆锥的母线长为30 cm,侧面积为300cm,则这个圆锥的底面半径为( )A5 cmB10 cmC15 cmD20 cm10两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A916B34C94D31611在 中,则 的值是( )ABCD12如图,一条抛物线与轴相交于、两点(点在点的左侧),其顶点在线段上移动若点、的坐标分别为、,点的横坐标的最大值为,则点的横坐标的最小值为( )ABCD二、填空题(每题4分,共24分)13二次函数图象与轴交于点,则与图象轴的另一个

4、交点的坐标为_14如图,RtABC中,ACB90,ACBC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的点A处,若AOOB2,则图中阴影部分面积为_15点A(-1,m)和点B(-2,n)都在抛物线上,则m与n的大小关系为m_n(填“”或“”)16公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了有关黄金矩形的问题并建立起比例理论,他认为所谓黄金分割,指的是把长为L的线段分为两部分,使其中较长部分对于全部之比,等于较短部分对于较长部分之比所谓黄金矩形指的就是矩形的宽与长的比适合这一比例则在黄金矩形中宽与长的比值是_

5、17如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_18如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则cos_三、解答题(共78分)19(8分)如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)(1)求反比例函数的表达式;(2)根据图象直接写出当mx时,x的取值范围;(3)计算线段AB的长20(8分)如图,AB是O的直径,点C在O上,AD垂直于过点C的切线,垂足为D.(1)若BAD= 80,求DAC的度数;(2)如果AD=4,AB=8,则AC= 21(8分)如图1,抛物线yx2+bx+c的

6、对称轴为直线x,与x轴交于点A和点B(1,0),与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F(1)求抛物线的解析式;(2)点P是直线BE上方抛物线上一动点,连接PD、PF,当PDF的面积最大时,在线段BE上找一点G,使得PGEG的值最小,求出PGEG的最小值(3)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以A、M、N、K为顶点的四边形是正方形时,请求出点N的坐标22(10分)端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好

7、朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.23(10分)在一空旷场地上设计一落地为矩形的小屋,拴住小狗的长的绳子一端固定在点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为.(1)如图1,若,则_.(2)如图2,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边形的小屋,其他条件不变,则在的变化过程中,当取得最小值时,求边的长及的最小值.24(10分)计算:2cos30+(3.14)025(12分)二次函数yx22x3图象与x轴交于A、B两点,点A在点B左侧,求AB的长26如图,ABC

8、中,AC=BC,CDAB于点D,四边形DBCE是平行四边形.求证:四边形ADCE是矩形.参考答案一、选择题(每题4分,共48分)1、D【分析】根据垂径定理,OCAB,故OC平分AB,由AB=12,得出BC=6,再结合已知条件和勾股定理,求出OC即可【详解】解:OCAB,AB=12BC=6OC=故选D【点睛】本题主要考查了垂径定理以及勾股定理,能够熟悉定理以及准确的运算是解决本题的关键2、A【解析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s0.002s0.03,所以,甲比乙的产量稳定.故选A【

9、点睛】本题考核知识点:方差. 解题关键点:理解方差意义.3、B【解析】根据比例式的性质,即可得到答案【详解】,变形错误的是选项B故选B【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键4、B【解析】nanhai共有6个拼音字母,a有2个,根据概率公式可得答案【详解】nanhai共有6个拼音字母,a有2个,抽中a的概率为,故选:B【点睛】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比5、B【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:分两种情况:

10、当腰为4时,449,不能构成三角形;当腰为9时,499,所以能构成三角形,周长是:9941故选B【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键6、D【分析】根据题目信息可知当y=0时,此时,可以求出a的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限.【详解】解:抛物线与轴没有交点,时无实数根;即,解得,又的顶点的横坐标为:;纵坐标为:;故抛物线的顶点在第四象限.故答案为:D.【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据

11、抛物线与x轴无交点得出时无实数根,再利用根的判别式求解a的取值范围.7、D【分析】画树状图得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率【详解】解:画树状图得:共有20种等可能的结果,两次摸到的球的颜色都是红球的有6种情况,两次摸到的球的颜色相同的概率为:故选:D【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比8、D【分析】由题意可知AD=2,BD=3,利用勾股定理求出AB的长,再根据余弦的定义即可求出答案【详解】解:如下图,根据题意可知,AD=2,BD=3,由勾股定理可得:,的余弦值是:故选:D【点睛】本题考查的知识点是利用网格求角的三

12、角函数值,解此题的关键是利用勾股定理求出AB的长9、B【解析】设这个圆锥的底面半径为r,根据圆锥的侧面积公式可得r30=300,解得r=10cm,故选B.10、B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果因为面积比是9:16,则相似比是34,故选B.考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方11、A【分析】根据正弦函数是对边比斜边,可得答案【详解】解:sinA=故选A【点睛】本题考查了锐角正弦函数的定义.12、C【分析】根据顶点在线段上移动,又知点、的坐标分别为、,再根据平行于轴,之间距离不变,点的横坐标的最大

13、值为,分别求出对称轴过点和时的情况,即可判断出点横坐标的最小值【详解】根据题意知,点的横坐标的最大值为,此时对称轴过点,点的横坐标最大,此时的点坐标为,当对称轴过点时,点的横坐标最小,此时的点坐标为,点的坐标为,故点的横坐标的最小值为,故选:C【点睛】本题考查了抛物线与轴的交点,二次函数的图象与性质解答本题的关键是理解二次函数在平行于轴的直线上移动时,两交点之间的距离不变二、填空题(每题4分,共24分)13、【分析】确定函数的对称轴为:,即可求解【详解】解:函数的对称轴为:,故另外一个交点的坐标为,故答案为【点睛】本题考查的是抛物线与轴的交点和函数图象上点的坐标特征,熟练掌握二次函数与坐标轴的

14、交点、二次函数的对称轴是解题的关键14、【分析】根据等腰三角形的性质求出AB,再根据旋转的性质可得BAAB,然后求出OAB30,再根据直角三角形两锐角互余求出ABA60,即旋转角为60,再根据S阴影S扇形ABA+SABCSABCS扇形CBCS扇形ABAS扇形CBC,然后利用扇形的面积公式列式计算即可得解【详解】解:ACB90,ACBC,ABC是等腰直角三角形,AB2OA2OB4,BC2,ABC绕点B顺时针旋转点A在A处,BAAB,BA2OB,OAB30,ABA60,即旋转角为60,S阴影S扇形ABA+SABCSABCS扇形CBCS扇形ABAS扇形CBC故答案为:【点睛】本题考查了阴影部分面积的

15、问题,掌握等腰直角三角形的性质、旋转的性质、扇形面积公式是解题的关键15、.【解析】试题解析:当时, 当时, 故答案为: 16、【分析】根据黄金矩形指的就是矩形的宽与长的比适合黄金分割比例,所以求出黄金分割比例即可,设线段长为1,较长的部分为x,则较短的部分为1-x,根据较长部分对于全部之比,等于较短部分对于较长部分之比,求出x,即可得到比值【详解】解:设线段长为1,较长的部分为x,则较短的部分为1-xx1=,x2=(舍)黄金分割比例为:黄金矩形中宽与长的比值:故答案为:【点睛】本题主要考查了黄金分割比例,读懂题意并且列出比例式正确求解是解决本题的关键17、【分析】求出黑色区域面积与正方形总面

16、积之比即可得答案.【详解】图中有9个小正方形,其中黑色区域一共有3个小正方形,所以随意投掷一个飞镖,击中黑色区域的概率是,故答案为【点睛】本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率18、【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求cos的值【详解】小正方形面积为49,大正方形面积为169, 小正方形的边长是7,大正方形的边长是13,在RtABC中,AC2BC2AB2,即AC2(7AC)2132,整理得,AC27AC600,解得AC5,AC12(舍去),BC12,cos=故填:.【点睛】本题考查了勾股定理的

17、证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键三、解答题(共78分)19、 (1)反比例函数的表达式是y=;(2)当mx时,x的取值范围是1x0或x1;(3)AB=2【分析】(1)把A的坐标代入反比例函数的解析式即可求出答案;(2)求出直线的解析式,解组成的方程组求出B的坐标,根据A、B的坐标结合图象即可得出答案;(3)根据A、B的坐标利用勾股定理分别求出OA、OB,即可得出答案【详解】(1)把A(1,2)代入y=得:k=2,即反比例函数的表达式是y=;(2)把A(1,2)代入y=mx得:m=2,即直线的解析式是y=2x,解方程组得出B点的坐标是(-1,-

18、2),当mx时,x的取值范围是-1x0或x1;(3)过A作ACx轴于C,A(1,2),AC=2,OC=1,由勾股定理得:AO=,同理求出OB=,AB=2考点:反比例函数与一次函数的交点问题20、(1)DAC=40,(2)【分析】(1)连结OC,根据已知条件证明AD/OC,结合OA=OC,得到DAC=OAC=DAB,即可得到结果;(2)根据已知条件证明平行四边形ADCO是正方形,即可求解;【详解】解:(1)连结OC,则OCDC,又ADDC,AD/OC,DAC=OCA;又OA=OC,OAC=OCA,DAC=OAC=DAB,DAC=40(2),AB为直径,ADOC,四边形ADCO是平行四边形,又,平

19、行四边形ADCO是正方形,故答案是【点睛】本题主要考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键21、(1)yx2+x+2;(2);(3)N点的坐标为:或()或()或()或()或或()【分析】(1)根据对称轴公式列出等式,带点到抛物线列出等式,解出即可;(2)先求出A、B、C的坐标,从而求出D的坐标算出BD的解析式,根据题意画出图形,设出P、G的坐标代入三角形的面积公式得出一元二次方程,联立方程组解出即可;(3)分类讨论当AM是正方形的边时,()当点M在y轴左侧时(N在下方), ()当点M在y轴右侧时,当AM是正方形的对角线时,分别求出结果综合即可【详解】(1)抛物线yx2+b

20、x+c的对称轴为直线x,与x轴交于点B(1,0),解得,抛物线的解析式为:yx2+x+2;(2)抛物线yx2x+2与x轴交于点A和点B,与y轴交于点C,A(1,0),B(1,0),C(0,2)点D为线段AC的中点,D(2,1),直线BD的解析式为:,过点P作y轴的平行线交直线EF于点G,如图1,设点P(x,),则点G(x,),当x时,S最大,即点P(,),过点E作x轴的平行线交PG于点H,则tanEBAtanHEG,故为最小值,即点G为所求联立 解得,(舍去), 故点E(,),则PG的最小值为PH(3)当AM是正方形的边时,()当点M在y轴左侧时(N在下方),如图2,当点M在第二象限时,过点A

21、作y轴的平行线GH,过点M作MGGH于点G,过点N作HNGH于点H,GMA+GAM90,GAM+HAN90,GMAHAN,AGMNHA90,AMAN,AGMNHA(AAS),GANH1,AHGM,即y, 解得x,当x时,GMx(1),yNAHGM,N(,)当x时,同理可得N(,),当点M在第三象限时,同理可得N(,)()当点M在y轴右侧时,如图3,点M在第一象限时,过点M作MHx轴于点H设AHb,同理AHMMGN(AAS),则点M(1+b,b)将点M的坐标代入抛物线解析式可得:b(负值舍去)yNyM+GMyM+AH,N(,)当点M在第四象限时,同理可得N(,-)当AM是正方形的对角线时,当点M

22、在y轴左侧时,过点M作MG对称轴于点G,设对称轴与x轴交于点H,如图1AHNMGN90,NAHMNG,MNAN,AHNNGN(AAS),设点N(,),则点M(,),将点M的坐标代入抛物线解析式可得, (舍去),N(,),当点M在y轴右侧时,同理可得N(,)综上所述:N点的坐标为:或()或()或()或()或或()【点睛】本题考查二次函数与一次函数的综合题型,关键在于熟练掌握设数法,合理利用相似全等等基础知识22、(1)树状图见解析;(2)【解析】分析:(1)根据题意可以用树状图表示出所有的可能结果;(2)根据(1)中的树状图可以得到小悦拿到的两个粽子都是肉馅的概率详解:(1)肉粽记为A、红枣粽子

23、记为B、豆沙粽子记为C,由题意可得,(2)由(1)可得,小悦拿到的两个粽子都是肉馅的概率是:,即小悦拿到的两个粽子都是肉馅的概率是点睛:本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率23、(1)88;(2)BC长为;S的最小值为【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10-x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可【详解】解:(1)如图1,拴住小狗的10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论