版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )ABCD2将一元二次方程x2-4x+3=0化成(x+m)2=n的形式,则n等于( )A-3B1C4D73已知如图,直线,相交于点,且,添加一个条件后,仍不能判定的是( )ABCD4下列说法正
2、确的是()A了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B甲、乙两人跳远成绩的方差分别为,说明乙的跳远成绩比甲稳定C一组数据2,2,3,4的众数是2,中位数是2.5D可能性是1%的事件在一次试验中一定不会发生5圆心角为140的扇形的半径为3cm,则这个扇形的面积是()cm1AB3C9D66如图,锐角ABC的高CD和BE相交于点O,图中与ODB相似的三角形有()A1个B2个C3个D4个7如图,点E是正方形ABCD的边DC上一点,把ADE绕点A顺时针旋转90到ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()AB5C8D48如图,O是ABC的外接圆,BAC=60,若
3、O的半径OC为2,则弦BC的长为()A1BC2D9如图,矩形的对角线交于点,已知,下列结论错误的是( )ABCD10如图是二次函数图像的一部分,直线是对称轴,有以下判断:;0;方程的两根是2和-4;若是抛物线上两点,则;其中正确的个数有( )A1B2C3D411如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )ABCD12已知关于的一元二次方程的两个根分别是,且满足,则的值是( )A0BC0或D或0二、填空题(每题4分,共24分)13小亮同学想测量学校旗杆的高度,他在某一时刻测得米长的竹竿竖直放置时影长为米,同时测量旗杆的影长时由于影子不全落在地面上,他测得地面上的影长为
4、米,留在墙上的影高为米,通过计算他得出旗杆的高度是_米.14已知抛物线,如果把该抛物线先向左平移个单位长度,再作关于轴对称的图象,最后绕原点旋转得到新抛物线,则新抛物线的解析式为_15若,则=_16某校七年级共名学生参加数学测试,随机抽取名学生的成绩进行统计,其中名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有_人.17在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b为常数且b2)的垂线,垂足为点Q,则tanOPQ=_18从,0,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是_三、解答题(共78分)19(8分)解下列两题:(1)已知,求的值
5、;(2)已知为锐角,且2sin=4cos30tan60,求的度数20(8分)先化简,再求值:,其中2a2,从中选一个你喜欢的整数代入求值21(8分)如图,ABC内接于O,AB=AC=10,BC=12,点E是弧BC的中点.(1)过点E作BC的平行线交AB的延长线于点D,求证:DE是O的切线.(2)点F是弧AC的中点,求EF的长.22(10分)如图,某高速公路建设中需要确定隧道AB的长度已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60和45求隧道AB的长(1.73)23(10分)如图,在平面直角坐标系中,正比例函数的图象与反比例函数的图象经过点(1)分别求这两
6、个函数的表达式;(2)将直线向上平移个单位长度后与轴交于,与反比例函数图象在第一象限内的交点为,连接,求点的坐标及的面积.24(10分)如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,4)(1)将ABC各顶点的横纵坐标都缩小为原来的得到A1B1C1,请在图中画出A1B1C1;(2)求A1C1的长25(12分)在平面直角坐标系xOy中,抛物线()(1)写出抛物线顶点的纵坐标 (用含a的代数式表示);(2)若该抛物线与x轴的两个交点分别为点A和点B,且点A在点B的左侧,AB=1求a的值;记二次函数图象在点A,B之间的部分为W(含点A和点B),若直线()经
7、过(1,-1),且与图形W有公共点,结合函数图象,求b的取值范围26某校为了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成如图所示两幅不完整的统计图,请根据统计图回答下列问题:(1)补全条形统计图并填空,本次调查的学生共有 名,估计该校2000名学生中“不了解”的人数为 (2)“非常了解”的4人中有A1、A2两名男生,B1、B2两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到两名男生的概率参考答案一、选择题(每题4分,共48分)1、A
8、【分析】让黄球的个数除以球的总个数即为所求的概率【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是故选A【点睛】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比2、B【分析】先把常数项移到方程右侧,两边加上4,利用完全平方公式得到(x-2)2=1,从而得到m=-2,n=1,然后计算m+n即可【详解】x2-4x+3=0,x2-4x=-3x2-4x+4=-3+4,(x-2)2=1,即n=1故选B【点睛】本题考查了解一元二次方程的应用,解题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时)3、C【分析】根据全等三角形
9、判定,添加或或可根据SAS或ASA或AAS得到.【详解】添加或或可根据SAS或ASA或AAS得到,添加属SSA,不能证.故选:C【点睛】考核知识点:全等三角形判定选择.熟记全等三角形的全部判定是关键.4、C【分析】全面调查与抽样调查的优缺点:全面调查收集的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果数据的个数是偶数,中间两数的平均数就是中位数,一组数据中出现次数最多的数据叫做
10、众数【详解】解:A了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B甲、乙两人跳远成绩的方差分别为,说明甲的跳远成绩比乙稳定,B错误;C一组数据,的众数是,中位数是,正确;D可能性是的事件在一次试验中可能会发生,D错误故选C【点睛】本题考查了统计的应用,正确理解概率的意义是解题的关键5、D【解析】试题分析:扇形面积的计算公式为:,故选择D6、C【解析】试题解析:BDO=BEA=90,DBO=EBA,BDOBEA,BOD=COE,BDO=CEO=90,BDOCEO,CEO=CDA=90,ECO=DCA,CEOCDA,BDOBEACEOCDA故选C7、A【分析】利用旋转的性质得出
11、四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案【详解】把顺时针旋转的位置,四边形AECF的面积等于正方形ABCD的面积等于25,中,故选A【点睛】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键8、D【分析】先由圆周角定理求出BOC的度数,再过点O作ODBC于点D,由垂径定理可知CD=BC,DOC=BOC=120=60,再由锐角三角函数的定义即可求出CD的长,进而可得出BC的长【详解】解:BAC=60,BOC=2BAC=260=120,过点O作ODBC于点D,OD过圆心,CD=BC,DOC=BOC=120=60,
12、CD=OCsin60=2=,BC=2CD=2故选D【点睛】本题考查的是圆周角定理、垂径定理及锐角三角函数的定义,根据题意作出辅助线,构造出直角三角形是解答此题的关键9、B【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:四边形ABCD是矩形,AC=BD,AO=CO,BO=DO, ADC=BCD=90AO=CO=BO=DO,OCD=ODC=,A、,故A选项正确;B、在RtADC中,cosACD= , cos=,AO=,故B选项错误;C、在RtBCD中,tanBDC= , tan=BC=atan,故C选项正确;D、在RtBCD中,cosBDC= ,
13、cos=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.10、C【分析】根据函数图象依次计算判断即可得到答案.【详解】对称轴是直线x=-1,故正确;图象与x轴有两个交点,0,故正确;图象的对称轴是直线x=-1,与x轴一个交点坐标是(2,0),与x轴另一个交点是(-4,0),方程的两根是2和-4,故正确;图象开口向下,在对称轴左侧y随着x的增大而增大,是抛物线上两点,则0,当m=时,=60m1=0,m2=都符合题意.故选:C.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式,解题关键是熟练掌握一元二次方程ax2+bx+c=0(a0
14、)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1x2=.二、填空题(每题4分,共24分)13、【分析】根据题意画出图形,然后利用某物体的实际高度:影长=被测物体的实际高度:被测物体的影长即可求出旗杆的高度.【详解】根据题意画出如下图形,有,则AC即为所求.设AB=x则 解得 故答案为10.5.【点睛】本题主要考查相似三角形的应用,掌握某物体的实际高度:影长=被测物体的实际高度:被测物体的影长是解题的关键.14、【分析】由抛物线的顶点为(0,0),然后根据平移的性质,轴对称的性质,以及旋转的性质即可得到答案.【详解】解:抛物线的顶点坐标为(0,0),图像开口向上,向左平移个单位
15、长度,则顶点为:(),关于轴对称的图象的顶点为:(2,0),绕原点旋转得到新抛物线的图像的顶点为(),且图像开口向下;新抛物线的解析式为:.故答案为:.【点睛】本题考查了二次函数图象与几何变换,解的关键是熟练掌握旋转的性质、轴对称的性质和平移的性质.15、【分析】把所求比例形式进行变形,然后整体代入求值即可【详解】,;故答案为【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键16、152.【解析】随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校七年级学生在这次数学测试中达到优秀的人数【详解】随机抽取了50名学生的成绩进行统计,共有20名学
16、生成绩达到优秀,样本优秀率为:2050=40%,又某校七年级共380名学生参加数学测试,该校七年级学生在这次数学测试中达到优秀的人数为:38040%=152人.故答案为:152.【点睛】本题考查了用样本估计总体,解题的关键是求样本的优秀率.17、【解析】试题分析:如图,设直线l与坐标轴的交点分别为A、B,AOB=PQB=90,ABO=PBQ,OAB=OPQ,由直线的斜率可知:tanOAB=,tanOPQ=;故答案为考点:1一次函数图象上点的坐标特征;2解直角三角形18、【解析】分析:由题意可知,从,0,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到
17、所求概率了.详解:从,0,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,抽到有理数的概率是:故答案为点睛:知道“从,0,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.三、解答题(共78分)19、 (1) 6;(2) 锐角=30【分析】(1)根据等式,设a=3k,b=4k,代入所求代数式化简求值即可;(2)由cos30=,tan60=,化简即可得出sin的值,根据特殊角的三角函数值即可得【详解】解:(1),设a=3k,b=4k,=6,故答案为:6;(2)2sin=4cos30ta
18、n60=4=,sin=,锐角=30,故答案为:30【点睛】本题考查了化简求值,特殊角的三角函数值的应用,掌握化简求值的计算是解题的关键20、,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出的值,代入计算即可求出值【详解】解:原式,2a2,且a为整数,a0,1,2时没有意义,a1或2,当a1时,原式2;当a2时,原式1【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键21、(1)见解析;(2)【分析】(1)连接AE,由等弦对等弧可得,进而推出,可知AE为O的直径,再由等腰三角形三线合一得到AEBC,根据DEBC即可得DEA
19、E,即可得证;(2)连接BE,AF,OF,OF与AC交于点H,AE与BC交于点G,利用勾股定理求出AG,然后求直径AE,再利用垂径定理求出HF,最后用勾股定理求AF和EF.【详解】证明:(1)如图,连接AE,AB=AC又点E是弧BC的中点,即,即AE为O的直径,BAE=CAE又AB=ACAEBCDEBCDEAEDE是O的切线.(2)如图,连接BE,AF,OF,OF与AC交于点H,AE与BC交于点G, ABE=AFE=90,OFAC由(1)可知AG垂直平分BC,BG=BC=6在RtABG中,cosBAE=cosBAG,即AE=O的直径为,半径为.设HF=x,则OH=在RtAHO中,即,解得【点睛
20、】本题考查圆的综合问题,需要熟练掌握切线的证明方法,以及垂径定理和勾股定理的运用是关键.22、隧道AB的长约为635m.【分析】首先过点C作COAB,根据RtAOC求出OA的长度,根据RtCBO求出OB的长度,然后进行计算.【详解】如图,过点C作CO直线AB,垂足为O,则CO=1500m BCOB DCA=CAO=60,DCB=CBO=45在RtCAO 中,OA=1500=500m在RtCBO 中,OB=1500tan45=1500mAB=15005001500865=635(m)答:隧道AB的长约为635m考点:锐角三角函数的应用.23、(1);(2)【分析】(1)将A点的坐标分别代入正比例
21、函数与反比例函数的解析式即可求得答案;(2)利用直线平移的规律得到直线BC的解析式,再解方程组可求得点C的坐标,利用进行计算可求得结论.【详解】解:(1)把代入得,解得;把代入得,正比例函数的解析式为;反比例函数的解析式为;(2)直线向上平移的单位得到直线的解析式为,当时,则,解方程组得或,点在第一象限内,点的坐标为;连接,.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,只要把这两个函数的关系式联立成方程组求解即可.24、(1)作图见解析;(2) 【解析】(1)直接利用位似图形的性质求解即可;(2)根据题意利用勾股定理解答即可.【详解】(1)如图所示:A1B1C1,A2B2C2,都是符合题意的图形;(2)A1C1的长为:【点睛】本题考查了位似变换及勾股定理的知识点,解题的关键是由题意正确得出对应点的位置.25、(1)1a+8;(2)a=-1;或或【分析】(1)将原表达式变为顶点式,即可得到答案;(2)根据顶点式可得抛物线的对称轴是x=1 ,再根据已知条件得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版二年级语文上册第14课《我要的是葫芦》精美课件
- 吉首大学《画法几何》2021-2022学年第一学期期末试卷
- 吉首大学《版式设计》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷2
- 吉林艺术学院《戏曲栏目策划与制作》2021-2022学年第一学期期末试卷
- 吉林艺术学院《录音艺术基础》2021-2022学年第一学期期末试卷
- 吉林艺术学院《歌曲作法》2021-2022学年第一学期期末试卷
- 2024年公转私佣金协议书模板范本
- 吉林师范大学《用户体验设计》2021-2022学年第一学期期末试卷
- 吉林师范大学《宪法学》2021-2022学年期末试卷
- 蛇咬伤的护理查房-课件
- 《建筑防火通用规范》学习研讨
- 雅各布森翻译理论的解读与启示-对等
- 绩溪县现代化工有限公司年产1000吨34-二氯二苯醚项目(一期工程)竣工环境保护验收报告
- TMF自智网络白皮书4.0
- 所水力除焦设备介绍
- 鼻腔冲洗护理技术考核试题及答案
- 新版UCP600的中英文版下载
- 《企业员工薪酬激励问题研究10000字(论文)》
- 2023年地理知识竞赛试题及答案
- GB 1903.33-2022食品安全国家标准食品营养强化剂5′-单磷酸胞苷(5′-CMP)
评论
0/150
提交评论