版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1若关于x的一元二次方程x2+2xm0的一个根是x1,则m的值是()A1B2C3D42计算的结果是( )ABCD3在下面的计算程序中,若输入的值为1,则输出结果为( )A2B6
2、C42D124二位同学在研究函数(为实数,且)时,甲发现当 01时,函数图像的顶点在第四象限;乙发现方程必有两个不相等的实数根,则( )A甲、乙的结论都错误B甲的结论正确,乙的结论错误C甲、乙的结论都正确D甲的结论错误,乙的结论正确5如图,P为O外一点,PA、PB分别切O于点A、B,CD切O于点E,分别交PA、PB于点C、D,若PA6,则PCD的周长为()A8B6C12D106如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上O是EG的中点,EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH以下四个结论:GHBE;EHMGHF;
3、1;2,其中正确的结论是()ABCD7如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为 cm2,则扇形圆心角的度数为()A120B140C150D1608教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )ABCD9抛物线,下列说法正确的是( )A开口向下,顶点坐标B开口向上,顶点坐标C开口向下,顶点坐标D开口向上,顶点坐标10如图,PA,PB是O的切线,A,B为切点,AC是O的直径,BAC=28,则P的度数是( )A50B58C56D55二、填空题(每小题3分,共24分)11如图
4、,在ABCD中,点E在DC边上,若,则的值为_12布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是_13如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度,然后用一根长为的小竹竿竖直的接触地面和门的内壁,并测得,则门高为_14如图,已知的半径为1,圆心在抛物线上运动,当与轴相切时,圆心的坐标是_15如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点,当钟面显示点分时,分针垂直与桌面,点距离桌面的高度为公分,若此钟面显示点分时,点距桌面的高度为公分,如图2,钟面显示点分时,点距桌面的高度_.16将“定理”的英文
5、单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为 17如图,已知O的半径为1,AB,AC是O的两条弦,且ABAC,延长BO交AC于点D,连接OA,OC,若AD2ABDC,则OD_18如图,在四边形ABCD中,ABC90,对角线AC、BD交于点O,AOCO,CDBD,如果CD3,BC5,那么AB_三、解答题(共66分)19(10分)如图,内接于,是的直径,是上一点,弦交于点,弦于点,连接,且.(1)求证:;(2)若,求的长.20(6分)某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角ABC=4
6、5,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使ADC=30(1)求舞台的高AC(结果保留根号)(2)楼梯口B左侧正前方距离舞台底部C点3m处的文化墙PM是否要拆除?请说明理由.21(6分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,测得CBQ=60,求这条河的宽是多少米?(结果精确到0.1米,参考数据1.414,1.732)22(8分)(1)计算:计算:6cos45+()1+(1.73)0+|53|+4
7、2017(0.25)2017;(2)先化简,再求值:,其中满足.23(8分)如图所示,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆O,分别与BC、AB相交于点D、E,连接AD,已知CADB(1)求证:AD是O的切线;(2)若B30,CD,求劣弧BD的长;(3)若AC2,BD3,求AE的长24(8分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,
8、C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由25(10分)某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价(元/千克)与采购量(千克)之间的函数关系图象如图中折线所示(不包括端点).(1)当时,写出与之间的函数关系式;(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?26(10分)解方程:23(x)参考答案一、选择题(每小题3分,共30分)1、C【分析】根据一元二次方程的解的定义,把x1代入方程得1+2m0,然后解关于m的一次方程
9、即可【详解】解:把x1代入x2+2xm0得1+2m0,解得m1故选:C【点睛】本题考查一元二次的代入求参数,关键在于掌握基本运算方法.2、C【分析】根据二次根式的性质先化简,再根据幂运算的公式计算即可得出结果【详解】解:=,故选C【点睛】本题考查了二次根式的性质和同底数幂的乘方,熟练掌握二次根式的性质和同底数幂的乘方进行化简是解题的关键3、C【分析】根据程序框图,计算,直至计算结果大于等于10即可【详解】当时,继续运行程序,当时,继续运行程序,当时,输出结果为42,故选C【点睛】本题考查利用程序框图计算代数式的值,按照程序运算的规则进行计算是解题的关键4、D【分析】先根据函数的解析式可得顶点的
10、横坐标,结合判断出横坐标可能取负值,从而判断甲不正确;再通过方程的根的判别式判断其根的情况,从而判断乙的说法.【详解】,原函数定为二次函数甲:顶点横坐标为,所以甲不正确乙:原方程为,化简得:必有两个不相等的实数根,所以乙正确故选:D.【点睛】本题考查二次函数图象的性质、顶点坐标、一元二次方程的根的判别式,对于一般形式有:(1)当,方程有两个不相等的实数根;(2)当,方程有两个相等的实数根;(3)当,方程没有实数根.5、C【解析】由切线长定理可求得PAPB,ACCE,BDED,则可求得答案【详解】PA、PB分别切O于点A、B,CD切O于点E,PAPB6,ACEC,BDED,PC+CD+PDPC+
11、CE+DE+PDPA+AC+PD+BDPA+PB6+612,即PCD的周长为12,故选:C【点睛】本题主要考查切线的性质,利用切线长定理求得PAPB、ACCE和BDED是解题的关键6、A【分析】由四边形ABCD和四边形CGFE是正方形,得出BCEDCG,推出BEC+HDE=90,从而得GHBE;由GH是EGC的平分线,得出BGHEGH,再由O是EG的中点,利用中位线定理,得HOBG且HO=BG;由EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上,根据圆周角定理得出FHG=EHF=EGF=45,HEG=HFG,从而证得EHMGHF;设HN=a,则B
12、C=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,由HOBG,得出DHNDGC,即可得出,得到 ,即a2+2ab-b2=0,从而求得,设正方形ECGF的边长是2b,则EG=2b,得到HO=b,通过证得MHOMFE,得到,进而得到,进一步得到.【详解】解:如图,四边形ABCD和四边形CGFE是正方形,BCCD,CECG,BCEDCG,在BCE和DCG中,BCEDCG(SAS),BECBGH,BGH+CDG90,CDGHDE,BEC+HDE90,GHBE故正确;EHG是直角三角形,O为EG的中点,OHOGOE,点H在正方形CGFE的外接圆上,EFFG,FHGEHFEGF45,HEGH
13、FG,EHMGHF,故正确;BGHEGH,BHEH,又O是EG的中点,HOBG,DHNDGC,设EC和OH相交于点N设HNa,则BC2a,设正方形ECGF的边长是2b,则NCb,CD2a,即a2+2abb20,解得:ab(1+)b,或a(1)b(舍去),故正确;BGHEGH,EGBG,HO是EBG的中位线,HOBG,HOEG,设正方形ECGF的边长是2b,EG2b,HOb,OHBG,CGEF,OHEF,MHOMFE,EMOM,EOGO,SHOESHOG,故错误,故选A【点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键
14、7、C【解析】根据扇形的面积公式列方程即可得到结论【详解】OB=10cm,AB=20cm,OA=OB+AB=30cm,设扇形圆心角的度数为,纸面面积为 cm2,=150,故选:C【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .8、A【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为【详解】解:有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛场数为,故选:A【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系9、C【分析】直接根据顶点式即可得出顶点坐标,根据a的正负即可判断开口
15、方向【详解】,抛物线开口向下,由顶点式的表达式可知抛物线的顶点坐标为,抛物线开口向下,顶点坐标故选:C【点睛】本题主要考查顶点式的抛物线的表达式,掌握a对开口方向的影响和顶点坐标的确定方法是解题的关键10、C【分析】利用切线长定理可得切线的性质的PA=PB,则,再利用互余计算出,然后在根据三角形内角和计算出的度数【详解】解:PA,PB是O的切线,A,B为切点,PA=PB,在ABP中故选:C【点睛】本题主要考查了切线长定理以及切线的性质,熟练掌握切线长定理以及切线性质是解题的关键二、填空题(每小题3分,共24分)11、【分析】由DE、EC的比例关系式,可求出EC、DC的比例关系;由于平行四边形的
16、对边相等,即可得出EC、AB的比例关系,易证得,可根据相似三角形的对应边成比例求出BF、EF的比例关系【详解】解:,;四边形ABCD是平行四边形,;, 故答案为:【点睛】此题主要考查了平行四边形的性质以及相似三角形的判定和性质灵活利用相似三角形性质转化线段比是解题关键12、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可【详解】解:红1红2红3白1白2红1-红1红2红1红3红1白1红1白2红2红2红1-红2红3红2白1红2白2红3红3红1红3红2-红3白1红3白2白1白1红1白1红2白1红3-白1白2白2白2红1白2红2白2红3白2白1-从布袋里摸出两个球的方法一共有2
17、0种,摸到两个红球的方法有6种,摸到两个红球的概率是故答案为:【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率13、【分析】根据题意分别求出A,B,D三点的坐标,利用待定系数法求出抛物线的表达式,从而找到顶点,即可找到OE的高度【详解】根据题意有 设抛物线的表达式为 将A,B,D代入得 解得 当时, 故答案为:【点睛】本题主要考查二次函数的最大值,掌握待定系数法是解题的关键14、或或或【分析】根据圆与直线的位置关系可知,当与轴相切时,P点的纵坐标为1或-1,把1或-1代
18、入到抛物线的解析式中求出横坐标即可【详解】的半径为1,当与轴相切时,P点的纵坐标为1或-1当时,解得 ,此时P的坐标为或;当时,解得 ,此时P的坐标为或;故答案为:或或或【点睛】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x轴相切找到点P的纵坐标的值是解题的关键15、公分【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AB=10,进而得出A1C=16,求出OA2=OA=6,过A2作A2DOA1从而得出A2D=3即可【详解】如图:可得(公分)AB=10(公分),(公分)过A2作A2DOA1,(公分)钟面显示点分时,点距桌面的高度为:(公分).故答
19、案为:19公分.【点睛】此题主要考查了解直角三角形以及钟面角,得出A2OA1=30,进而得出A2D=3,是解决问题的关键16、【解析】试题分析:根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率因此,theorem中的7个字母中有2个字母e,任取一张,那么取到字母e的概率为17、【分析】可证AOBAOC,推出ACO=ABD,OA=OC,OAC=ACO=ABD,ADO=ADB,即可证明OADABD;依据对应边成比例,设OD=x,表示出AB、AD,根据AD2=ABDC,列方程求解即可【详解】在AOB和AOC中,ABAC,OBOC,OAOA,AOBAOC(
20、SSS),ABOACO,OAOA,ACOOAD,ADOBDA,ADOBDA,设ODx,则BD1+x,OD,AB,DCACADABAD,AD2ABDC,()2(),整理得:x2+x10,解得:x或x(舍去),因此AD,故答案为【点睛】本题考查了圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,利用参数解决问题是数学解题中经常用到的方法18、【分析】过点A作AEBD,由AAS得AOECOD,从而得CDAE3,由勾股定理得DB4,易证ABEBCD,得,进而即可求解【详解】过点A作AEBD,CDBD,AEBD,CDBAED90,COAO,
21、CODAOE,AOECOD(AAS)CDAE3,CDB90,BC5,CD3,DB4,ABCAEB90,ABE+EAB90,CBD+ABE90,EABCBD,又CDBAEB90,ABEBCD,AB故答案为:【点睛】本题主要考查相似三角形的判定和性质定理,全等三角形的判定和性质以及勾股定理,添加辅助线构造全等三角形,是解题的关键三、解答题(共66分)19、(1)详见解析;(2)【分析】(1)证法一:连接,利用圆周角定理得到,从而证明,然后利用同弧所对的圆周角相等及三角形外角的性质得到,从而使问题得解;证法二:连接,,由圆周角定理得到,从而判定,得到,然后利用圆内接四边形对角互补可得,从而求得,使问
22、题得解;(2)首先利用勾股定理和三角形面积求得AG的长,解法一:过点作于点,利用勾股定理求GH,CH,CD的长;解法二:过点作于点,利用AA定理判定,然后根据相似三角形的性质列比例式求解.【详解】(1)证法一:连接.为的直径,,.,.证法二:连接,.为的直径,,四边形内接于,.(2)解:在中,,根据勾股定理得.连接,为的直径,四边形是平行四边形.在中,,解法一:过点作于点在中,,在中,在中,解法二:过点作于点四边形为矩形.四边形为平行四边形,.,即【点睛】本题考查圆的综合知识,相似三角形的判定和性质,勾股定理解直角三角形,综合性较强,有一定难度.20、(1)m;(2)不需拆除文化墙PM,理由见
23、解析.【分析】(1)根据锐角三角函数,即可求出AC;(2)由题意可知:CM=3m,根据锐角三角函数即可求出DC,最后比较DC和CM的大小即可判断.【详解】解:(1)在RtABC中,ABC=45,坡长AB=2m,AC=ABsinABC=m答:舞台的高AC为m;(2)不需拆除文化墙PM,理由如下,由题意可知:CM=3m在RtADC中,ADC=30,AC=mDC=mm3mDCCM不需拆除文化墙PM.【点睛】此题考查的是解直角三角形的应用,掌握用锐角三角函数解直角三角形是解决此题的关键.21、17.3米.【解析】分析:过点C作于D,根据,得到 ,在中,解三角形即可得到河的宽度.详解:过点C作于D, 米
24、,在中, 米,米答:这条河的宽是米点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.22、 (1)8;(1)-1【解析】分析:(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(1)根据分式的加减法和除法可以化简题目中的式子,然后解方程,在其解中选一个使得原分式有意义的值代入即可解答本题详解:(1)6cos45+()-1+(-1.73)0+|5-3|+41017(-0.15)1017=6+3+1+5-3+41017(-)1017=3+3+1+531=8;(1) = = a=0或a=1(舍去)当a=0时,原式=-1点睛:本题考查分式的化简求值
25、、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法23、(1)见解析;(2);(3)AE【分析】(1)如图1,连接OD,由等腰三角形的性质可证BODBCAD,由直角三角形的性质可求ADO90,可得结论;(2)分别求出OD的长度和DOB的度数,再由弧长公式可求解;(3)通过证明ACDBDE,可得,设CD2x,DE3x,由平行线的性质可求x,由勾股定理可求AB的长,即可求解【详解】解:(1)如图1,连接OD,ACB90,CAD+ADC90,OBOD,BODB,CADB,CADODB,ODB+ADC90,ADO90,又OD是半径,AD是O
26、的切线;(2)B30,ACB90,CAD30,CAB60,AD2CD3,DAB30,ADOD,OD,ODOB,B30,BODB30,DOB120,劣弧BD的长;(3)如图2,连接DE,BE是直径,BDE90,ACBEDB90,ACDE,BCAD,ACDEDB,ACDBDE,设CD2x,DE3x,ACDE,x,CD1,BCBD+CD4,AB2,DEAC,AE【点睛】此题考查的是圆的综合大题、勾股定理和相似三角形的判定及性质,掌握切线的判定定理、弧长公式圆周角定理及推论、勾股定理和相似三角形的判定及性质是解决此题的关键24、(1)抛物线解析式为y=x2+2x+3;直线AC的解析式为y=3x+3;(
27、2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(,)或(,),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B,连接DB交y轴于M,如图1,则B(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时BDM的周长最小,然后求出直线DB的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-x+b,把C点坐标代入求出b得到直线PC的解析式为y=-x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标详解:(1)设抛物线解析式为y=a(x+1)(x3),即y=ax22ax3a,2a=2,解得a=1,抛物线解析式为y=x2+2x+3;当x=0时,y=x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(1,0),C(0,3)代入得,解得,直线AC的解析式为y=3x+3;(2)y=x2+2x+3=(x1)2+4,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 客车开发合同范本
- 基于物联网的2024年度窗帘自动化控制系统采购合同
- 美国宇航局着陆器合同模板
- 物品转让合同模板标准版
- 机关单位摄影合同模板
- 园区智能化管理与2024年度物业服务合同
- 2024年二手车买卖合同及相关税费协议2篇
- 股合同模板版
- 建筑工程清包合同范本
- 2024年度生产制造与代工合同2篇
- 2024榆林粮食和物资储备集团有限公司招聘(6人)笔试备考试题及答案解析
- GB/T 11263-2024热轧H型钢和剖分T型钢
- 《1980年代“现代派”论争中的现代主义与现实主义问题》
- 重庆市2023年人教版初中八年级上学期期末语文试题含答案(二)
- 《建筑电气学习》课件
- 数学-江西省稳派上进联考2024-2025学年2025届高三上学期11月调研测试试题和答案
- 2024-2025学年北京十三中分校八年级(上)期中数学试卷
- 湖南财政经济学院《证券投资学》2022-2023学年第一学期期末试卷
- (高级)增材制造设备操作员技能鉴定理论考试题库(浓缩500题)
- 2024秋期国家开放大学《法律文书》一平台在线形考(第一至五次考核形考任务)试题及答案
- DB2327T 097-2024 有机玉米生产技术规程
评论
0/150
提交评论