




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北师大版九年级数学下册第三章 圆综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A3B4CD2
2、、如图,正方形ABCD的边长为8,若经过C,D两点的O与直线AB相切,则O的半径为( )A4.8B5C4D43、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦4、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm5、如图,AB是O的直径,BD与O相切于点B,点C是O上一点,连接AC并延长,交BD于点D,连接OC,BC,若BOC50,则D的度数为()A50B55C65D756、已知,在圆中圆心角
3、度数为45,半径为10,则这个圆心角所对的扇形面积为( )ABCD7、如图,ABCD是的内接四边形,则的度数是( )A50B100C130D1208、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,3)则经画图操作可知:ABC的外接圆的圆心坐标是( )A(2,1)B(1,0)C(1,1)D(0,1)9、已知正三角形外接圆半径为,这个正三角形的边长是( )ABCD10、如图,AB为的直径,C、D为上两点,则AB的长度为( )A6B3C9D12第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB90,O是ABC的内切圆,三个
4、切点分别为D、E、F,若BF2,AF3,则ABC的面积是_2、如图,A是O上的一点,且AB是O的切线,CD是O的直径,连接AC、AD若BAC30,CD2,则的长为 _3、圆形角是270的扇形的半径为4cm,则这个扇形的面积是_4、如图,正方形ABCD内接于O,点P在上,则BPC的度数为_5、如图,一扇形纸扇完全打开后,外侧两竹条OA和OC的夹角为120,OA的长为25cm,贴纸部分的宽AB为20cm,则一面贴纸的面积为_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、如图1,在中,平分,且于点D(1)判断的形状;(2)如图2,在(1)的结论下,若,求的长;(3)如图3,在(1)的
5、结论下,若将绕着点D顺时针旋转得到,连接,作交于点F试探究与的数量关系,并说明理由2、如图,已知正方形 ABCD 的边长为4,以点 A 为圆心,1为半径作圆,点 E 是A 上的一动点,点 E 绕点 D 按逆时针方向转转 90,得到点 F,接 AF(1)求CF长;(2)当A、E、F三点共线时,求EF长;(3) AF的最大值是_3、如图,在中,O为AC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为D,与AC的另一个交点为E(1)求证:BO平分;(2)若,求BO的长4、如图,ABC内接于O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段
6、PE上,且PFCF(1)求证:CF是O的切线;(2)连接AP与O相交于点G,若ABC2PAC,求证:ABBP;(3)在(2)的条件下,若AC4,BC3,求CF的长5、如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD已知(1)求证:AD是O的切线(2)若OB2,CAD30,则的长为 -参考答案-一、单选题1、D【分析】作OMAB于M,ONCD于N,根据垂径定理、勾股定理得:OM=ON=4,再根据四边形MONP是正方形,故可求解【详解】作OMAB于M,ONCD于N,连接OB,OD,OB=5,BM= ,OM=AB=CD=8,ON=OM=4,
7、弦AB、CD互相垂直,DPB=90,OMAB于M,ONCD于N,OMP=ONP=90四边形MONP是矩形,OM=ON,四边形MONP是正方形,OP=3故选C【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线2、B【分析】连接EO,延长EO交CD于F,连接DO,设半径为x构建方程即可解决问题【详解】解:设O与AB相切于点E连接EO,延长EO交CD于F,连接DO,再设O的半径为xAB切O于E,EFAB,ABCD,EFCD,OFD=90,在RtDOF中,OFD=90,OF2+DF2=OD2,(8-x)2+42= x2,x=5,O的半径为5故选:B【点睛】本题考查了切线的性质、正
8、方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题3、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.4、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作O
9、CAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键5、C【分析】首先证明ABD90,由BOC50,根据圆周角定理求出A的度数即可解决问题【详解】解:BD是切线,BDAB,ABD90,BOC50,ABOC25,D90A65,故选:C【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型6、D【分析】利用扇
10、形面积公式直接计算即可【详解】解:在圆中圆心角度数为45,半径为10,则这个圆心角所对的扇形面积为:,故选:D【点睛】本题考查了扇形面积计算,解题关键是熟记扇形面积公式,准确进行计算7、B【分析】根据圆的内接四边形对角互补求得,进而根据圆周角定理求得【详解】解:ABCD是的内接四边形,故选B【点睛】本题考查了圆内接四边形对角互补,圆周角定理,求得是解题的关键8、A【分析】首先由ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为ABC的外心【详解】解:ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O即为所求的ABC的外心
11、,ABC的外心坐标是(2,1)故选:A【点睛】此题考查了三角形外心的知识注意三角形的外心即是三角形三边垂直平分线的交点解此题的关键是数形结合思想的应用9、B【分析】如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 再由等边三角形的性质,可得OAB=30,然后根据锐角三角函数,即可求解【详解】解:如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 根据题意得:OA= ,OAB=30,在中, ,AB=3,即这个正三角形的边长是3故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键10、A【分析】连接A
12、C,利用直角三角形30的性质求解即可【详解】解:如图,连接AC AB是直径, ACB=90, CAB=CDB=30, AB=2BC=6, 故选:A【点睛】本题考查圆周角定理,含30角的直角三角形的性质,解题的关键是学会添加常用辅助线,构造直角三角形解决问题二、填空题1、6【分析】根据题意利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理即可得出答案【详解】解:连接DO,EO,O是ABC的内切圆,切点分别为D,E,F,OEAC,ODBC,CD=CE,BD=BF=2,AF=AE=3又C=90,四边形OECD是矩形,又EO=DO,矩形OECD是正方形,设EO=x,则EC=
13、CD=x,在RtABC中BC2+AC2=AB2故(x+2)2+(x+3)2=52,解得:x=1,BC=3,AC=4,SABC=34=6.故答案为:6【点睛】本题主要考查三角形内切圆与内心,根据题意得出四边形OECF是正方形以及运用方程思维和勾股定理进行分析是解题的关键2、【分析】连接OA,由切线的性质得出AOAB,得出OAC是等边三角形,求出AOD120,由弧长公式可得出答案【详解】解:连接OA,AB是O的切线,AOAB,OAB90,BAC30,OAC60,OAOC,OAC是等边三角形,CAOC60,AOD120,CD2,的长为故答案为【点睛】本题考查了切线的性质以及弧长公式,切线的性质定理:
14、圆的切线垂直于过切点的半径;弧长公式:(为圆心角的度数,R表示圆的半径)3、12【分析】根据扇形的面积公式计算即可【详解】=12,故答案为:12【点睛】本题考查了扇形的面积,熟记扇形面积公式是解题的关键4、45度【分析】连接OB、OC,根据正方形的性质得到BOC的度数,利用圆周角与圆心角的关系得到答案【详解】解:连接OB、OC,四边形ABCD是正方形,BOC=90,BPC=,故答案为:45【点睛】此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各知识点是解题的关键5、200【分析】根据题意先求出BO,进而分别求出两个扇形的面积作差即可求出答案【详解】解:OA长为
15、25cm,贴纸部分的宽AB为20cm,BO=5cm,贴纸的面积为S=S扇形AOC-S扇形BOD=200(cm2).故答案为:200【点睛】本题考查扇形的面积计算,熟练掌握扇形的面积公式是解答此题的关键三、解答题1、(1)是等腰直角三角形,证明见解析;(2);(3)证明见解析【分析】(1)先求解取的中点 连接 再证明在以为圆心,为半径的同一个圆上,从而可得答案.(2)如图, 把顺时针旋转得到 连接 过作 交的延长线于 证明 证明 求解 再利用勾股定理可得答案;(3)如图,连接证明 可得 结合(1)问的结论可得答案.【详解】解:(1) 平分, 取的中点 连接 在以为圆心,为半径的同一个圆上, 为等
16、腰直角三角形.(2)如图, 把顺时针旋转得到 连接 过作 交的延长线于 (3)理由如下:如图,连接 即【点睛】本题考查的是等腰直角三角形的判定与性质,旋转的性质,相似三角形的判定与性质,圆的确定,圆周角定理的应用,是典型的综合题,熟练的运用图形的性质,作出恰当的辅助线是解本题的关键.2、(1)1;(2)或;(3)【分析】(1)连接AE,根据同角的余角相等可得:,利用全等三角形的判定定理可得:,再由其性质即可得解;(2)分两种情况讨论:当点E在正方形内部时,点A、E、F三点共线时,AF与圆C相切;当点E在正方形外部时,点A、三点共线时,与圆C相切;两种情况分别利用勾股定理进行求解即可得;(3)根
17、据题意判断出AF最大时,点C在AF上,根据正方形的性质求出AC,从而得出AF的最大值【详解】解:(1)连接AE,如图所示:,即:,在与中,;(2)如图所示:当点A、E、F三点共线时,AF与圆C相切,则,;如图所示:当点A、三点共线时,与圆C相切,则,;综合可得:当点A、E、F三点共线时,EF长为或;(3)如图所示,点C在线段AF上,AF取得最大值, ,即:AF的最大值是,故答案为:【点睛】题目主要考查正方形的性质,切线及旋转的性质,勾股定理等,理解题意,画出相应辅助图形是解题关键3、(1)见解析;(2)2【分析】(1)连接OD,由与AB相切得,由HL定理证明由全等三角形的性质得,即可得证;(2
18、)设的半径为,则,在中,得出关系式求出,可得出的长,在中,由正切值求出,在中,由勾股定理求出即可【详解】(1)如图,连接OD,与AB相切,在与中,平分;(2)设的半径为,则,在中,解得:,在中,即,在中,【点睛】本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键4、(1)证明见解析;(2)证明见解析;(3)【分析】(1)连接,由题意知,;可得,进而说明是的切线(2)连接,同弧所对圆周角相等,有,进而说明(3)勾股定理知,有,知,;在中用勾股定理求出的长,求出的长,通过角度关系得出,故有,进而求出的值【详解】解:(1)证明:如图所示,连接,为半径是的内接三角形,且是直径在和中,有又即是半径是的切线(2)证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/ZHHX 002-2024三角梅盆花生产技术规程与质量等级
- 2025西华大学辅导员考试试题及答案
- 2025辽东学院辅导员考试试题及答案
- 2025皖西学院辅导员考试试题及答案
- 电商运营方案设计
- 商业门面租赁合同标准版
- 卫生常识课:构建健康生活之美
- 手卫生督查实施要点
- 社区卫生服务社区管理讲座
- 小儿惊厥急救手册
- 导截流验收报告汇编
- 大班科学《神奇的中草药》课件
- 信用修复申请书
- 全过程造价控制流程全图
- 温州7.23动车事故调查报告介绍课件
- RAL 劳尔色卡电子版
- 造价咨询质量控制保证措施及服务质量
- 跳棋教学(课堂PPT)
- 火车过桥问题四年级(课堂PPT)
- MSA偏倚分析报告样本
- 中国颅脑创伤颅内压监测专家共识
评论
0/150
提交评论