版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,在矩形中,垂足为,设,且,则的长为( )A3BCD2在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一
2、次摸球实验,之后把它放回袋中,搅匀后,再继续摸出一球,记下其颜色,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数49425172232081669833329根据列表,可以估计出m的值是( )A8B16C24D323下列关系式中,是反比例函数的是( )AyByCxyD14我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( )ABCD5ABC中,C=90,内切圆与AB
3、相切于点D,AD=2,BD=3,则ABC的面积为()A3B6C12D无法确定6已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=2x2+b的图形相交于C,D两点,其中a、b为整数若AB=2,CD=1则a+b之值为何?()A1B9C16D217下列命题中,为真命题的是()A同位角相等B相等的两个角互为对顶角C若a2b2,则abD若ab,则2a2b8如图,将一边长AB为4的矩形纸片折叠,使点D与点B重合,折痕为EF,若EF2,则矩形的面积为()A32B28C30D369若将抛物线的函数图象先向右平移1个单位,再向下平移2个单位后,可得
4、到一个新的抛物线的图象,则所得到的新的抛物线的解析式为()ABCD10如图,直线AB与半径为2的O相切于点C,D是O上一点,且EDC=30,弦EFAB,则EF的长度为( )A2B2CD211从一个不透明的口袋中摸出红球的概率为,已知口袋中的红球是3个,则袋中共有球的个数是( )A5B8C10D1512如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A24mB25mC28mD30m二、
5、填空题(每题4分,共24分)13在一个不透明的布袋里装有若干个只有颜色不同的红球和白球,其中有3个红球,且从布袋中随机摸出1个球是红球的概率是三分之一 ,则白球的个数是_14如图,点A在双曲线y上,点B在双曲线y(k0)上,ABx轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是9,则k的值为_15如图,点G为ABC的重心,GEAC,若DE2,则DC_16如图,RtABC中,ACB90,ACBC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的点A处,若AOOB2,则图中阴影部分面积为_17把一个
6、小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系:h=20t-5t2,当小球达到最高点时,小球的运动时间为第_秒时18如图,AB是半圆O的直径,D是半圆O上一点,C是的中点,连结AC交BD于点E,连结AD,若BE4DE,CE6,则AB的长为_三、解答题(共78分)19(8分)如图1,抛物线y = ax2+bx-3经过A、B、C三点,己知点A(-3,0)、C (1, 0)(1)求此抛物线的解析式;(2)点P是直线AB下方的抛物线上一动点(不与A、B重合)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求 出此时P点的坐标;如图2,连
7、接AP,以AP为边作图示一侧的正方形APMN,当它恰好有一个顶点落在抛物 线对称轴上时,求出对应的P点的坐标20(8分)如图所示,分别切的三边、于点、,若,(1)求的长;(2)求的半径长21(8分)用配方法解方程2x2-4x-3=0.22(10分)已知关于x的一元二次方程2x2(2k1)xk1(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k的取值范围23(10分)已知:ABC是等腰直角三角形,BAC90,将ABC绕点C顺时针方向旋转得到ABC,记旋转角为,当90180时,作ADAC,垂足为D,AD与BC交于点E(1)如图1,当CAD15时,作AEC的平分线EF交BC于点F写出
8、旋转角的度数;求证:EA+ECEF;(2)如图2,在(1)的条件下,设P是直线AD上的一个动点,连接PA,PF,若AB,求线段PA+PF的最小值(结果保留根号)24(10分)(1)解方程: (2)如图,四边形是的内接四边形,若,求的度数25(12分)如图,二次函数的图象与轴相交于、两点,与轴相交于点,点、是二次函数图象上的一对对称点,一次函数的图象过点、(1)求二次函数的解析式和点坐标(2)根据图象直接写出使一次函数值小于二次函数值的的取值范围26在正方形中,点是直线上动点,以为边作正方形,所在直线与所在直线交于点,连接(1)如图1,当点在边上时,延长交于点,与交于点,连接求证:;若,求的值;
9、(2)当正方形的边长为4,时,请直接写出的长参考答案一、选择题(每题4分,共48分)1、C【分析】根据同角的余角相等求出ADE=ACD,再根据两直线平行,内错角相等可得BAC=ACD,然后求出AC【详解】解:DEAC,ADE+CAD=90,ACD+CAD=90,ACD=ADE=,矩形ABCD的对边ABCD,BAC=ACD,cos=,AC=故选:C【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键2、C【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋
10、势来估计概率,这个固定的近似值就是这个事件的概率求解即可【详解】解:通过大量重复试验后发现,摸到黑球的频率稳定于,由题意得:,解得:m=24,故选:C【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率,关键是根据黑球的频率得到相应的等量关系3、C【解析】反比例函数的一般形式是y(k0)【详解】解:A、当k=0时,该函数不是反比例函数,故本选项错误;B、该函数是正比例函数,故本选项错误;C、由原函数变形得到y=-,符合反比例函数的定义,故本选项正确;D、只有一个变量,它不是函数关系式,故本选项错误故选C【点睛】本题考查了正比例函数及反比例函数的定义,注意区分
11、:正比例函数的一般形式是y=kx(k0),反比例函数的一般形式是y(k0)4、B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是,故选:B【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键5、B【分析】易证得四边形OECF是正方形,然后由切线长定理可得AC=2+r,BC=3+r,AB=5,根据勾股定理列方程即可求得答案【详解】如图,设O分别与边BC、CA相切于点E、F,连接OE,OF,O分
12、别与边AB、BC、CA相切于点D、E、F,DEBC,DFAC,AF=AD=2,BE=BD=3,OEC=OFC=90,C=90,四边形OECF是矩形,OE=OF,四边形OECF是正方形,设EC=FC=r,AC=AF+FC=2+r,BC=BE+EC=3+r,AB=AD+BD=2+3=5,在RtABC中,=+,=+,即解得:或(舍去)O的半径r为1,故选:B【点睛】本题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理注意掌握辅助线的作法,注意数形结合思想与方程思想的应用6、A【解析】分析:判断出A、C两点坐标,利用待定系数法求出a、b即可;详解:如图,由题意知:A(1,2),C
13、(2,2),分别代入y=3x2+a,y=2x2+b可得a=5,b=6,a+b=1,故选A点睛:本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键7、D【解析】根据同位角、对顶角和等式以及不等式的性质,逐一判断选项,即可【详解】A、两直线平行,同位角相等,原命题是假命题;B、相等的两个角不一定互为对顶角,原命题是假命题;C、若a2b2,则ab或ab,原命题是假命题;D、若ab,则2a2b,是真命题;故选:D【点睛】本题主要考查真假命题的判断,熟练掌握常用的公理,定理,推论和重要结论,是解题的关键.8、A【分析】连接BD交EF于O,由折
14、叠的性质可推出BDEF,BODO,然后证明EDOFBO,得到OEOF,设BCx,利用勾股定理求BO,再根据BOFBCD,列出比例式求出x,即可求矩形面积【详解】解:连接BD交EF于O,如图所示:折叠纸片使点D与点B重合,折痕为EF,BDEF,BODO,四边形ABCD是矩形,ADBCEDO=FBO在EDO和FBO中,EDO=FBO,DO=BO,EOD=FOB=90EDOFBO(ASA)OEOFEF,四边形ABCD是矩形,ABCD4,BCD90,设BCx,BD,BO,BOFC90,CBDOBF,BOFBCD,即:,解得:x8,BC8,S矩形ABCDABBC4832,故选:A【点睛】本题考查矩形的折
15、叠问题,熟练掌握折叠的性质,全等三角形的判定,以及相似三角形的判定与性质是解题的关键9、C【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可【详解】由“左加右减”的原则可知,将抛物线先向右平移1个单位可得到抛物线;由“上加下减”的原则可知,将抛物线先向下平移2个单位可得到抛物线故选:C【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键10、B【解析】本题考查的圆与直线的位置关系中的相切连接OC,EC所以EOC=2D=60,所以ECO为等边三角形又因为弦EFAB所以OC垂直EF故OEF=30所以EF=OE=211、D【分析】根据概率公式,即可
16、求解.【详解】3=15(个),答:袋中共有球的个数是15个.故选D.【点睛】本题主要考查概率公式,掌握概率公式,是解题的关键.12、D【解析】由题意可得:EPBD,所以AEPADB,所以,因为EP=1.5,BD=9,所以,解得:AP=5,因为AP=BQ,PQ=20,所以AB=AP+BQ+PQ=5+5+20=30,故选D.点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.二、填空题(每题4分,共24分)13、6【分析】设白球的个数
17、是x个,根据 列出算式,求出x的值即可.【详解】解:设白球的个数是x个,根据题意得:解得:x=6.故答案为6.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.14、1【分析】过点A作AEy轴于点E,首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB的面积为:4+9=1,再利用xy=k求出即可【详解】过点A作AEy轴于点E,点A在双曲线y上,矩形EODA的面积为:4,矩形ABCD的面积是9,矩形EOCB的面积为:4+91,则k的值为:xyk1故答案为1【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键15、1
18、【分析】根据重心的性质可得AG:DG2:1,然后根据平行线分线段成比例定理可得2,从而求出CE,即可求出结论【详解】点G为ABC的重心,AG:DG2:1,GEAC,2,CE2DE224,CDDE+CE2+41故答案为:1【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键16、【分析】根据等腰三角形的性质求出AB,再根据旋转的性质可得BAAB,然后求出OAB30,再根据直角三角形两锐角互余求出ABA60,即旋转角为60,再根据S阴影S扇形ABA+SABCSABCS扇形CBCS扇形ABAS扇形CBC,然后利用扇形的面积公式列式计算即可得解
19、【详解】解:ACB90,ACBC,ABC是等腰直角三角形,AB2OA2OB4,BC2,ABC绕点B顺时针旋转点A在A处,BAAB,BA2OB,OAB30,ABA60,即旋转角为60,S阴影S扇形ABA+SABCSABCS扇形CBCS扇形ABAS扇形CBC故答案为:【点睛】本题考查了阴影部分面积的问题,掌握等腰直角三角形的性质、旋转的性质、扇形面积公式是解题的关键17、1【解析】h=10t-5t1=-5(t-1)1+10,-50,函数有最大值,则当t=1时,球的高度最高故答案为118、4【分析】如图,连接OC交BD于K设DEkBE4k,则DKBK2.5k,EK1.5k,由ADCK,推出AE:EC
20、DE:EK,可得AE4,由ECKEBC,推出EC2EKEB,求出k即可解决问题【详解】解:如图,连接OC交BD于K,OCBD,BE4DE,可以假设DEkBE4k,则DKBK2.5k,EK1.5k,AB是直径,ADKDKCACB90,ADCK,AE:ECDE:EK,AE:6k:1.5k,AE4,ECKEBC,EC2EKEB,361.5k4k,k0,k,BC2,AB4故答案为:4【点睛】本题考查相似三角形的判定和性质,垂径定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型三、解答题(共78分)19、(1)y = x2+2x3;(2)(,),(1,2)或
21、(,)或(-1,-4)【分析】(1)直接用待定系数法求解即可;(2)由抛物线解析式y = x2+2x3,令x=0,y=3,求出点B(0,-3),设直线AB的解析式为y=kx+b,把A(3,0)和B(0,3)代入y =kx+b求出k=-1,b=-3,直线AB的解析式为y=x3,设E(x,x3),则PE=(x+)2+,从而得当PE最大时,P点坐标为(,);抛物线对称轴为直线x=1,A(3,0),正方形APMN的顶点落在抛物线对称轴上的情况有两种情况,i) 当点N在抛物线对称轴直线x=1上;ii)当点M在抛物线对称轴直线x=1;根据这两种情况,作出图形,找到线段之间的等量关系,解之即可.【详解】(1
22、)把A(3,0)和C(1,0)代入y = ax2+bx3得,解得,抛物线解析式为y = x2+2x3;(2)设P(x,x2+2x3),直线AB的解析式为y=kx+b,由抛物线解析式y = x2+2x3,令x=0,y=3,B(0,3),把A(3,0)和B(0,3)代入y =kx+b得,解得,直线AB的解析式为y=x3,PEx轴,E(x,x3),P在直线AB下方,PE=x3(x2+2x3)=x23x=(x+)2+,当x=时,y= x2+2x3=,当PE最大时,P点坐标为(,).抛物线对称轴为直线x=1,A(3,0),正方形APMN的顶点落在抛物线对称轴上的情况有三种:i)当点N在抛物线对称轴直线x
23、=1上时,作PRx轴于点R,设对称轴与x轴的交点为L,如图,四边形APMN为正方形,AN=AP,PAR+RAN=90,PAR+APR=90,APR=RAN,在APR和NAL中 APRNAL(AAS),PR=AL,AL=1(3)=2,PR=2,此时x2+2x3=2,解得x1=1,x2=1,P在直线AB下方,x=1,P(1,2);ii)当点M在抛物线对称轴直线x=1上时,如图,过点P作PH对称轴于点H、作AGHP于点G,四边形APMN为正方形, PA=PM,APM=90,APG+MPH=90,APG+GAP=90,GAP=HPM,在APG和PMH中 APGPMH(AAS),AG=PH,PG=MH,
24、GH=PG+PHP(x,x2+2x-3)x+3+(-x2-2x+3)=2,解得x1=,x2=,P在直线AB下方,x=,P(,)) 当点P在抛物线对称轴直线x=-1.上时,P(-1,-4),终上所述,点P对应的坐标为(1,2)或(,)或(-1,-4).【点睛】本题考查了待定系数法求一次函数与二次函数解析式、配方法求二次函数最值、全等三角形的判定与性质等知识点,有一定综合性,难度适中第(3)问的两种情况当中,根据图形,构造全等三角形是关键20、(1)4;(2)2【分析】(1)设AD=x,根据切线长定理得到AF=AD,BE=BD,CE=CF,根据关系式列得方程解答即可;(2)连接OD、OE、OF、O
25、A、OB、OC,将ABC分为三个三角形:AOB、BOC、AOC,再用面积法求得半径即可.【详解】解:(1)设 , 分别切 的三边 、 于点 、, , , , ,即 ,得 , 的长为 (2)如图,连接OD、OE、OF、OA、OB、OC,则ODAB,OEBC,OFAC,且OD=OE=OF=2,,AB2+BC2=AC2,ABC是直角三角形,且B是直角,ABC的面积=,OD=2,即的半径长为2.【点睛】此题考查圆的性质,切线长定理,利用面积法求得圆的半径,是一道圆的综合题.21、x1=1+,x2=1-.【分析】借助完全平方公式,将原方程变形为,开方,即可解决问题【详解】解:2x2-4x-3=0,点睛:
26、用配方法解一元二次方程的步骤:移项(常数项右移)、二次项系数化为1、配方(方程两边同加一次项一半的平方)、开方、求解、定解22、(1)见解析;(2)【分析】(1) 根据根的判别式判断即可1,有两个实数根;=1,有一个实数根;1,无实数根.(2) 根据求根公式求出两个根,根据一个根是正数判断k的取值范围即可.【详解】(1)证明:由题意,得 , 方程总有两个实数根.(2)解:由求根公式,得,. 方程有一个根是正数,. .【点睛】此题主要考查了一元二次方程根的判别式及求根公式,熟记概念是解题的关键.23、(1)105,见解析;(2)【分析】(1)解直角三角形求出ACD即可解决问题,连接AF,设EF交
27、CA于点O,在EF时截取EM=EC,连接CM首先证明CFA是等边三角形,再证明FCMACE(SAS),即可解决问题(2)如图2中,连接AF,PB,AB,作BMAC交AC的延长线于M证明AEFAEB,推出EF=EB,推出B,F关于AE对称,推出PF=PB,推出PA+PF=PA+PBAB,求出AB即可解决问题【详解】解:由CAD15,可知ACD=90-15=75,所以ACA=180-75=105即旋转角为105证明:连接AF,设EF交CA于点O在EF时截取EMEC,连接CMCEDACE+CAE45+1560,CEA120,FE平分CEA,CEFFEA60,FCO180457560,FCOAEO,F
28、OCAOE,FOCAOE,COEFOA,COEFOA,FAOOEC60,ACF是等边三角形,CFCAAF,EMEC,CEM60,CEM是等边三角形,ECM60,CMCE,FCAMCE60,FCMACE,FCMACE(SAS),FMAE,CE+AEEM+FMEF(2)解:如图2中,连接AF,PB,AB,作BMAC交AC的延长线于M由可知,EAFEAB75,AEAE,AFAB,AEFAEB,EFEB,B,F关于AE对称,PFPB,PA+PFPA+PBAB,在RtCBM中,CBBCAB2,MCB30,BMCB1,CM,ABPA+PF的最小值为【点睛】本题属于四边形综合题,考查旋转变换相关,全等三角形的判定和性质,相似三角形的判定和性质以及三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题,难度较大24、(1);(2)136【分析】(1)提出公因式(x-2),将方程转化为两个因式的积等于零的形式,即可得出两个一元一次方程,再求解即可;(2)先根据同弧所对的圆周角是圆心角的一半求出BAD,然后根据圆内接四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年民间借贷合同样本
- 2024年度工业机器人销售合同范本2篇
- 2024年涉外住宅买卖合同(汇率及税务处理)
- 2024年度建筑工程项目委托代办合同范本下载3篇
- 2024年度技术转让合同:某科研机构向企业转让一项新技术专利3篇
- 2024年标准保密合同范本版
- 2024年度担保业务委托合同模板3篇
- 科研机构一岗双责制度的创新管理
- 2024年土地租赁合同:高科技产业用地3篇
- 2024年环保分包商违约责任合同
- TFJPACIA 001-2024 氟石膏规程规范
- 医院提高住院患者抗菌药物治疗前病原学送检率学习培训课件
- 2024-2025学年七年级英语上册第一学期 期末综合模拟考试卷(沪教版)(一)
- 10S505 柔性接口给水管道支墩
- 2024北京高考语文试卷(真题+答案)
- DL∕T 939-2016 火力发电厂锅炉受热面管监督技术导则
- GB/T 35603-2024绿色产品评价卫生陶瓷
- TDT 1083-2023 国土调查数据库更新数据规范
- 手机摄影教程
- 模拟集成电路设计智慧树知到期末考试答案章节答案2024年广东工业大学
- 人机工程设计智慧树知到期末考试答案章节答案2024年兰州理工大学
评论
0/150
提交评论