版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1关于的一元二次方程的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C无实数根D不能确定2使分式13-x有意义的xAx3Bx3Cx0Dx03在平面直角坐标系中,二次函数与坐标轴交点个数( )A3个B2个C1个D0个4若有意义,则x的取值范围是A且
2、BCD5一元二次方程的解是( )ABC,D,6如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是( )ABCD7如图,在RtABC中,ACB90,AC6,BC8,点M是AB上的一点,点N是CB上的一点,当CAN与CMB中的一个角相等时,则BM的值为()A3或4B或4C或6D4或68关于x的一元二次方程x2+(a22a)x+a1=0的两个实数根互为相反数,则a的值为()A2B0C1D2或09反比例函数的图像经过点,则下列关系正确的是( )ABCD不能确定10如图,在中,点在边上,且,过点作,交边于点,将沿着折叠,得,与边分别交于点若的面积为,则四边形的面积是( )ABCD11若两个相似三角形的
3、周长之比是1:4,那么这两个三角形的面积之比是()A1:4B1:2C1:16D1:812已知关于x的一元二次方程有两个实数根,则k的取值范围是( )AB且C且D二、填空题(每题4分,共24分)13在函数中,自变量的取值范围是_.14二次函数y(x1)25的顶点坐标是_15正八边形的每个外角的度数和是_16用纸板制作了一个圆锥模型,它的底面半径为1,高为,则这个圆锥的侧面积为_17如图是一个三角形点阵,从上向下数有无数多行,其中第一行有2个点,第二行有4个点第n行有2n个点,若前n行的点数和为930,则n是_18如图,矩形中,将矩形按如图所示的方式在直线上进行两次旋转,则点在两次旋转过程中经过的
4、路径的长是(结果保留)_.三、解答题(共78分)19(8分)2019年全国青少年禁毒知识竞赛开始以来,某市青少年学生踊跃参加,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格为了了解该市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图:(1)本次抽查的人数是 ;扇形统计图中不及格学生所占的圆心角的度数为 ;(2)补全条形统计图;(3)若某校有2000名学生,请你根据调查结果估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?20(8分)已知二次函数的顶点坐标为,且其图象经过点,求此二次函数的解析式21
5、(8分)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30方向航行10海里到达B处,在B处测得小岛C在北偏东60方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?22(10分)如图,抛物线经过点,请解答下列问题:求抛物线的解析式;抛物线的顶点为点,对称轴与轴交于点,连接,求的长点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由23(10分)某校薛老师所带班级的全体学生每两人都握一次手,共握手1540次,求薛老师所带班级的学生人数24(10分)如图,ABC中,ABAC
6、2,BAC120,D为BC边上的点,将DA绕D点逆时针旋转120得到DE(1)如图1,若ADDC,则BE的长为 ,BE2+CD2与AD2的数量关系为 ;(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;(3)M为线段BC上的点,BM1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为 25(12分)如图,BAC的平分线交ABC的外接圆于点D,ABC的平分线交AD于点E(1)求证:DEDB;(2)若BAC90,BD4,求ABC外接圆的半径26已知反比例函数的图象经过点(2,2)(I)求此反比例函数的解析式;(I
7、I)当y2时,求x的取值范围参考答案一、选择题(每题4分,共48分)1、A【分析】根据根的判别式即可求解判断.【详解】=b2-4ac=m2+40,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.2、A【解析】直接利用分式有意义的条件进而得出答案【详解】分式13-x有意义,则解得:x1故选A【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键3、B【分析】首先根据根的判别式判定与轴的交点,然后令,判定与轴的交点,即可得解.【详解】由题意,得该函数与轴有一个交点当时,该函数与轴有一个交点该函数与坐标轴有两个交点故答案为B
8、.【点睛】此题主要考查利用根的判别式判定二次函数与坐标轴的交点,熟练掌握,即可解题.4、A【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案【详解】由题意可知:,解得:且,故选A【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.5、C【解析】用因式分解法解一元二次方程即可.【详解】 或 ,故选C.【点睛】本题主要考查一元二次方程的解,掌握解一元二次方程的方法是解题的关键.6、D【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案【详解】河堤横断面迎水坡AB的坡比是,解得:AC,故AB8(m),故选
9、:D【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键7、D【分析】分两种情形:当时,设,可得,解出值即可;当时,过点作,可得,得出,则,证明,得出方程求解即可【详解】解:在RtABC中,ACB90,AC1,BC8,AB=10,设,当时,可得,当时,如图2中,过点作,可得,综上所述,或1故选:D【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题8、B【解析】设方程的两根为x1,x2,根据题意得x1+x2=1,所以a2-2a=1,解得a=1或a=2,当a=2时,方程化为x2+1=1,=-41,故a=2舍去
10、,所以a的值为1故选B9、B【分析】根据点的横坐标结合反比例函数图象上点的坐标特征即可求出y1、y2的值,比较后即可得出结论【详解】解:反比例函数的图象经过点,y1=3,y2=,3,故选:B【点睛】本题考查了反比例函数图象上点的坐标特征,根据点的横坐标利用反比例函数图象上点的坐标特征求出点的纵坐标是解题的关键10、B【分析】由平行线的性质可得,,可设AH=5a,HP=3a,求出SADE=,由平行线的性质可得,可得SFGM=2, 再利用S四边形DEGF= SDEM- SFGM,即可得到答案【详解】解:如图,连接AM,交DE于点H,交BC于点P,DEBC,的面积为SADE=32=设AH=5a,HP
11、=3a沿着折叠AH=HM=5a,SADE=SDEM=PM=2a,DEBCSFGM=2S四边形DEGF= SDEM- SFGM=-2=故选:B【点睛】本题考查了折叠变换,平行线的性质,相似三角形的性质,熟练运用平行线的性质是本题的关键11、C【分析】根据相似三角形的面积的比等于相似比的平方可得答案【详解】解:相似三角形的周长之比是1:4,对应边之比为1:4,这两个三角形的面积之比是:1:16,故选C【点睛】此题主要考查了相似三角形的性质,关键是掌握相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方12、C【分析】若一元二次方程有两个实数根,则根的判别式=b24ac1,建立关于k
12、的不等式,求出k的取值范围还要注意二次项系数不为1【详解】解:一元二次方程有两个实数根,解得:,k的取值范围是且;故选:C【点睛】本题考查了一元二次方程根的判别式的应用切记不要忽略一元二次方程二次项系数不为零这一隐含条件二、填空题(每题4分,共24分)13、【分析】根据分式有意义,分母不等于0列式计算即可得解【详解】由题意得,x10,解得x1故答案为x1【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负14、(1,5)【分析】已知解析式为抛物线的
13、顶点式,根据顶点式的坐标特点,直接写出顶点坐标【详解】解:因为y(x1)25是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(1,5)故答案为:(1,5)【点睛】本题考查了二次函数的性质,根据二次函数的顶点式找出抛物线的对称轴及顶点坐标是解题的关键15、360【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案【详解】解:因为任何一个多边形的外角和都是360,所以正八边形的每个外角的度数和是360故答案为:360【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360是解题的关键16、【分析】根据圆锥的侧面积公式计算即可得到结果【详解】解:根据题
14、意得:S=1 =3,故填:3【点睛】此题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解本题的关键17、1【分析】根据题意得出这个点阵中前n行的点数和等于2+4+6+8+2n,再计算即可【详解】解:根据题意知,2+4+6+8+2n=2(1+2+3+n)=2n(n+1)=n(n+1),解得:(负值已舍去);故答案为:1【点睛】此题考查图形的变化规律,结合图形,找出数字的运算规律,利用规律解决问题18、【分析】根据勾股定理求出BD的长,点B旋转所经过的路径应是弧线,根据公式计算即可.【详解】如图,,由旋转得: ,点B两次旋转所经过的路径长为=.故答案为:.【点睛】此题考查弧长公式,熟记公式,明确各字
15、母代表的含义并正确代入公式进行计算即可三、解答题(共78分)19、(1)120,18;(2)详见解析;(3)1000【分析】(1)由优秀的人数及其所占百分比可得总人数;用360乘以不及格人数所占比例即可得出不及格学生所占的圆心角的度数;(2)用总人数减去各等级人数之和求出良好的人数,据此可补全条形图;(3)用总人数乘以样本中“优秀”和“良好”人数和占被调查人数的比例即可得出答案【详解】解:(1)本次抽查的人数为:2420%120(人),扇形统计图中不及格学生所占的圆心角的度数为36018,故答案为:120,18;(2)良好的人数为:120(24+54+6)36(人),补全图形如下:(3)估计该
16、校学生知识竞赛成绩为“优秀”和“良好”两个等级共有:20001000(人)【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、【分析】根据已知顶点坐标,利用待定系数法可设二次函数的解析式为,代入坐标求解即可求得二次函数的解析式【详解】解:因为二次函数的顶点坐标为,所以可设二次函数的解析式为:因为图象经过点(1,1),所以,解得,所以,所求二次函数的解析式为:【点睛】本题考查了用待定系数法求二次函数的解析式,一般设解析式为;当已知二次函数的顶点坐标时,
17、可设解析式为;当已知二次函数图象与x轴的两个交点坐标时,可设解析式为21、渔船没有进入养殖场的危险.【解析】试题分析:点B作BMAH于M,过点C作CNAH于N,利用直角三角形的性质求得CK的长,若CK4.8则没有进入养殖场的危险,否则有危险试题解析:过点B作BMAH于M,BMAF.ABM=BAF=30.在BAM中,AM=AB=5,BM=. 过点C作CNAH于N,交BD于K.在RtBCK中,CBK=90-60=30设CK=,则BK= 在RtACN中,CAN=90-45=45,AN=NC.AM+MN=CK+KN.又NM=BK,BM=KN.解得5海里4.8海里,渔船没有进入养殖场的危险. 答:这艘渔
18、船没有进入养殖场危险.22、(1)y=-x2+2x+3;(2)2;(3)存在点F,点F(1,2)或(1,-2)【分析】(1)利用待定系数法即可求出结论;(2)先求出顶点D的坐标,然后分别求出BE和DE的长,利用勾股定理即可求出结论;(3)先求出BC的长,然后根据三角形的面积公式即可求出点F的纵坐标,从而求出结论【详解】解:(1)抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),将A(0,3),B(-1,0)代入得:, 解得: 则抛物线解析式为y=-x2+2x+3; (2)y=-x2+2x+3=-(x-1)2+4由D为抛物线顶点,得到D(1,4), 对称轴与x轴交于点E, DE=4,
19、OE=1, B(1,0),BO=1, BE=2, 在RtBED中,根据勾股定理得:BD=2(3)抛物线的对称轴为直线x=1由对称性可得:点C的坐标为(3,0)BC=3(-1)=4的面积为,BC=4解得:=2或-2点F的坐标为(1,2)或(1,-2)即存在点F,点F(1,2)或(1,-2)【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、勾股定理和三角形的面积公式是解决此题的关键23、薛老师所带班级有56人【分析】设薛老师所带班级有x人,根据题意列出方程求解即可【详解】解:设薛老师所带班级有x人,依题意,得:x(x1)1540,整理,得:x2x30800,解得:x156
20、,x255(不合题意,舍去)答:薛老师所带班级有56人【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键24、(1)1;BE1+CD14AD1;(1)能满足(1)中的结论,见解析;(3)1【分析】(1)依据旋转性质可得:DEDACD,BDEADB60,再证明:BDEBDA,利用勾股定理可得结论;(1)将ACD绕点A顺时针旋转110得到ABD,再证明:DBEDAE90,利用勾股定理即可证明结论仍然成立;(3)从(1)中发现:CBE30,即:点D运动路径是线段;分别求出点D位于D1时和点D运动到M时,对应的BE长度即可得到结论【详解】解:(1)如图1,ABAC,BAC1
21、10,ABCACB30,ADDCCADACB30,ADBCAD+ACB60,BAD90,由旋转得:DEDACD,BDEADB60BDEBDA(SAS)BEDBAD90,BEABBE1+CD1BE1+DE1BD1cosADBcos60BD1ADBE1+CD14AD1;故答案为:;BE1+CD14AD1;(1)能满足(1)中的结论如图1,将ACD绕点A顺时针旋转110得到ABD,使AC与AB重合,DAD110,BADCAD,ABDACB30,ADADDE,DAEAED30,BDCD,ADBADCDAE90ADB+ADC180ADB+ADB180A、D、B、D四点共圆,同理可证:A、B、E、D四点共圆,A、E、B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品标识和可追溯性培训教材课件
- 食品安全从农田到餐桌
- 糖尿病护理措施及治疗
- 2024年对苯二胺项目资金筹措计划书代可行性研究报告
- 智慧粮库解决方案
- 肺部感染治疗新进展
- 水源热泵制冷工作原理培训
- 销售年中规划
- 整式的乘法说课稿
- 好玩的纸说课稿
- 防水施工方案28433
- 防水工程施工报价表
- 反击式破碎机说明书
- 共青团中山市12355青少年综合服务平台建设方案
- 索道年度自检报告
- 二年级数学小故事(课堂PPT)
- 项目安全管理工作流程图
- 国家开放大学《生产与运作管理》形考作业1-4参考答案
- 中国压力容器标准与美国ASME规范的比较(DOC 8页)
- 起重机轨道修理施工方案(共18页)
- 交警大队协勤人员管理制度-规章制度文书
评论
0/150
提交评论