




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图是二次函数yax2+bx+c图象的一部分,图象过点A(3,0),对称轴为x1给出四个结论:b24ac;2a+b0;ab+c0;5ab其中正确的有()A1个B2个C3个D4个2如图是
2、抛物线的部分图象,其顶点坐标是,给出下列结论:;其中正确结论的个数是( )A2B3C4D53在同一坐标系中,二次函数的图象与一次函数的图象可能是( )A B C D 4如图,已知在ABC中,DEBC,则以下式子不正确的是( )AB C D5学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,垂足分别为,则栏杆端应下降的垂直距离为( )ABCD6在RtABC中,C90,、所对的边分别为a、b、c,如果a=3b,那么A的余切值为( )AB3CD7为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:月用水量(吨)456813户数45731则关于这
3、20户家庭的月用水量,下列说法正确的是()A中位数是5B平均数是5C众数是6D方差是68已知反比例函数,则下列结论正确的是( )A点(1,2)在它的图象上B其图象分别位于第一、三象限C随的增大而减小D如果点在它的图象上,则点也在它的图象上9如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B已知小颖的眼睛D离地面的高度CD1.5m,她离镜子的水平距离CE0.5m,镜子E离旗杆的底部A处的距离AE2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A4.5mB4.8mC5.5mD6 m10如图,在RtABC中,CD是斜边AB上的中线,
4、已知AC=3,CD=2,则cosA的值为( )ABCD二、填空题(每小题3分,共24分)11一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是_12一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是_ 13计算:_14如图,抛物线和抛物线的顶点分别为点M和点N,线段MN经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是_,MN平移到PQ扫过的阴影部分的面积是_15如图所示,一个质地均匀的小正方体有六个面,小明要给这六个面分别涂上红色、黄 色和蓝色三种颜色.在桌面上掷这个小正方体,
5、要使事件“红色朝上”的概率为,那么需要把_个面涂为红色16已知抛物线,如果把该抛物线先向左平移个单位长度,再作关于轴对称的图象,最后绕原点旋转得到新抛物线,则新抛物线的解析式为_17要使二次根式有意义,则的取值范围是_18如图,在RtABC中,C90,AC4,BC3,分别以A,B为圆心,以的长为半径作圆,将RtABC截去两个扇形,则剩余(阴影)部分的面积为_三、解答题(共66分)19(10分)已知,(如图),点,分别为射线上的动点(点C、E都不与点B重合),连接AC、AE使得,射线交射线于点,设,.(1)如图1,当时,求AF的长.(2)当点在点的右侧时,求关于的函数关系式,并写出函数的定义域.
6、(3)连接交于点,若是等腰三角形,直接写出的值.20(6分)已知一次函数的图象与轴和轴分别交于、两点,与反比例函数的图象分别交于、两点(1)如图,当,点在线段上(不与点、重合)时,过点作轴和轴的垂线,垂足为、当矩形的面积为2时,求出点的位置;(2)如图,当时,在轴上是否存在点,使得以、为顶点的三角形与相似?若存在,求出点的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求的值21(6分)图,图都是88的正方形网格,每个小正方形的顶点称为格点线段OM,ON的端点均在格点上在图,图给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在
7、格点上要求:(1)图中所画的四边形是中心对称图形;(2)图中所画的四边形是轴对称图形;(3)所画的两个四边形不全等22(8分)如图,一块直角三角板的直角顶点放在正方形的边上,并且使一条直角边经过点另一条直角边与交于点求证:23(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,连接BP,DQ(1)依题意补全图 1;(2)连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: 24(
8、8分)(1)计算:(2)如图,正方形纸板在投影面上的正投影为,其中边与投影面平行,与投影面不平行.若正方形的边长为厘米,求其投影的面积25(10分)如图,在平面直角坐标系中,直线AB与函数y(x0)的图象交于点A(m,2),B(2,n)过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使ODOC,且ACD的面积是6,连接BC(1)求m,k,n的值;(2)求ABC的面积 26(10分)计算:(1);(2)参考答案一、选择题(每小题3分,共30分)1、B【解析】由图象与x轴有交点,可以推出b2-4ac0,即b24ac,正确;由对称轴为x=-b2a=-1可以判定错误;由x=-1时,y0,可
9、知错误把x1,x【详解】图象与x轴有交点,对称轴为x-b2a1,与y轴的交点在又二次函数的图象是抛物线,与x轴有两个交点,b24ac0,即b24ac,故本选项正确,对称轴为x-b2a2ab,2a-b0,故本选项错误,由图象可知x1时,y0,ab+c0,故本选项错误,把x1,x3代入解析式得a+b+c0,9a3b+c0,两边相加整理得5a+cb,c0,即5ab,故本选项正确故选:B【点睛】本题考查了二次函数图像与各系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定2、C【分析】根据开口方向,对称轴的位置以及二
10、次函数与y轴的交点的位置即可判断出a,b,c的正负,从而即可判断结论是否正确;根据对称轴为即可得出结论;利用顶点的纵坐标即可判断;利用时的函数值及a,b之间的关系即可判断;利用时的函数值,即可判断结论是否正确【详解】抛物线开口方向向上, 对称轴为 , 抛物线与y轴的交点在y轴的负半轴, ,故错误;对称轴为 , , ,故正确;由顶点的纵坐标得,故正确;当时, ,故正确;当时, ,故正确;所以正确的有4个,故选:C【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键3、C【分析】根据二次函数、一次函数图像与系数的关系,对每个选项一一判断即可【详解】A由一次函数图像可得:a
11、0,b0;由二次函数图像可得:a0,b0,b0,b0,故B选项不可能C由一次函数图像可得:a0;由二次函数图像可得:a0,故C选项可能D由一次函数图像可得:a0,b0;由二次函数图像可得:a0,b0,CE0即可确定x的取值范围;(3)分PA=PD、AP=AD和AD=PD三种情况,根据BE=及线段的和差关系,分别利用勾股定理列方程求出x的值即可得答案.【详解】(1)如图,过点作于N,AB=5,在中,=5=3,AN=4,BC=x=4,CN=BC-BN=4-3=1,在中,AD=4,BC=x=4,AD=BC,四边形为平行四边形,又,ABCADF,解得:,(2),又B=B,ABCABE,AD/BC,x0
12、,CE=0,0 x5,(3)如图,当PA=PD时,作AHBM于H,PGAD于G,延长GP交BM于N,PA=PD,AD=4,AG=DG=2,ADB=DAE,AD/BE,GNBE,DAE=AEB,ADB=DBE,DBE=AEB,PB=PE,BN=EN=BE=,AB=5,BH=ABcosABH=3,AHBM,GNMB,GNAD,AHN=GNH=NGA=90,四边形AHNG是矩形,HN=AG=2,BN=BH+HN=3+2=5,=5,解得:x=.如图,当AP=AD=4时,作AHBM于H,ADB=APD,AD/BM,ADB=DBC,APD=BPE,DBC=BPE,BE=PE=,cosABC=,AB=5,B
13、H=3,AH=4,在RtAEH中,(4+)2=42+(3-)2,解得:x=,如图,当AD=PD=4时,作AHBM于H,DNBM于N,DAP=DPA,AD/BM,DAP=AEB,APD=BPE,BPE=AEB,BP=BE=,cosABC=,AB=5,BH=3,AH=4,AD/BM,AHBM,DNBM,四边形AHND是矩形,DN=AH=4,HN=AD=4,中RtBND中,(4+)2=42+(4+3)2,解得:x=,综上所述:x的值为或或.【点睛】本题考查相似三角形的综合,熟练掌握锐角三角函数的定义、平行线的性质、等腰三角形的性质及相似三角形的判定与性质,灵活运用分类讨论的思想是解题关键.20、(1
14、)或;(2)存在,或;(3)【分析】(1)根据已知条件先求出函数解析式,然后根据平行得到,得出,又结合矩形面积=,可求出结果;(2)先由已知条件推到出点E在A点左侧,然后求出C,D两点坐标,再分以下两种情况:当;当,得出,进而可得出结果;(3)联立一次函数和反比例函数的解析式得出方程组,消去y得出关于x的一元二次方程,解出x的值,再分以下两种情况结合三角形的三边关系求解:5为等腰三角形的腰长;5为等腰三角形底边长.进而得出k的值.【详解】解:(1)当时,如图,由轴,轴,易得,即,而矩形面积为2,.由得为1或2.或.(2),而,点不可能在点右侧,当在点左侧时,联立或即,.当,.而,即.当,即,.
15、综上所述,或.(3)当和时,联立,得,.当5为等腰三角形的腰长时,.当5为等腰三角形底边长时,而,舍去.因此,综上,.【点睛】本题是一次函数和反比例函数的综合题,主要考查一次函数和反比例函数解析式的求法,图象与性质,两函数交点问题以及相似的判定与性质,综合性较强,有一定的难度.21、(1)见解析;(2)见解析;(3)见解析【分析】(1)设小正方形的边长为1,由勾股定理可知,由图,结合题中要求可以OM,ON为邻边画一个菱形;(2)符合题意的有菱形、筝形等是轴对称图形;(3)图和图的两个四边形不能是完全相同的.【详解】解:(1)如图即为所求(2)如图即为所求【点睛】本题考查了轴对称与中心对称图形,
16、属于开放题,熟练掌握轴对称与中心对称图形的含义是解题的关键.22、详见解析【分析】根据正方形性质得到角的关系,从而根据判定两三角形相似的方法证明BPQCDP【详解】证明:四边形是正方形,【点睛】此题重点考查学生对两三角形相似的判定的理解,熟练掌握两三角形相似的判定方法是解题的关键23、(1)详见解析;(1)详见解析;BP=AB【分析】(1)根据要求画出图形即可;(1)连接BD,如图1,只要证明ADQABP,DPB=90即可解决问题;结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN由ADQABP,ANQACP,推出DQ=PB,AQN=APC=45,由AQP=45
17、,推出NQC=90,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图 1:(1)证明:连接 BD,如图 1,线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,AQ=AP,QAP=90,四边形 ABCD 是正方形,AD=AB,DAB=90,1=1ADQABP,DQ=BP,Q=3,在 RtQAP 中,Q+QPA=90,BPD=3+QPA=90,在 RtBPD 中,DP1+BP1=BD1, 又DQ=BP,BD1=1AB1,DP1+DQ1=1AB1解:结论:BP=AB理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QNADQABP,ANQA
18、CP,DQ=PB,AQN=APC=45,AQP=45,NQC=90,CD=DN,DQ=CD=DN=AB,PB=AB【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴24、(1);(2)【分析】(1)代入特殊角的三角函数值,根据实数的混合运算法则计算即可;(2) 作BECC1于点E,利用等腰直角三角形的性质求得的长即可求得BC的正投影的长,即可求得答案【详解】(1) ;(2)过点B作BECC1于点E,在中,且BECC1,四边形为矩形,【点睛】本题主要考查了平行投影的性质,特殊角的三角函数值,等腰直角三角形的性质,本题理解并掌握正投影的特征是解题的关键:正投影是在平行投影中,投影线垂直于投影面产生的投影25、 (1) m1,k8,n1;(2)ABC的面积为1【解析】试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据ACD的面积为6求得m=1,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BEAC,得BE=2,根据三角形面积公式求解可得试题解析:(1)点A的坐标为(m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 窗帘行业品牌形象塑造与传播考核试卷
- 粮油企业生产流程标准化与质量控制考核试卷
- 木地板品牌国际化战略与市场拓展考核试卷
- 弹射玩具产品创新设计思路与方法考核试卷
- 砼结构构件的预制件疲劳试验考核试卷
- 纺织品的耐磨性与强度分析考核试卷
- 半导体照明器件的环境适应性测试标准考核试卷
- 线上线下融合的卫浴零售模式探索考核试卷
- 天津城建大学《形势与政策(5)》2023-2024学年第二学期期末试卷
- 三门峡职业技术学院《基本乐理专业理论教学》2023-2024学年第二学期期末试卷
- 丰田锋兰达说明书
- 2023年东莞市人民医院医师规范化培训招生(放射科)考试参考题库含答案
- 2022年甘肃省张掖市辅警协警笔试笔试模拟考试(含答案)
- 勾头作业施工方案
- 中医医院重症医学科建设与管理指南
- 创伤性网胃炎
- LY/T 1556-2000公益林与商品林分类技术指标
- GB/T 3522-1983优质碳素结构钢冷轧钢带
- 主要电气设备绝缘电阻检查记录
- 探析小学数学作业分层设计与评价获奖科研报告
- 2023年陕西高考理科数学试题
评论
0/150
提交评论