




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1如图图形中,是中心对称图形的是( )ABCD2如图,在ABC中,DEBC,DE4cm,则BC的长为()A8cmB12cmC11cmD10cm3一个长方形的面积为,且一边长为,则另一边的长为( )ABCD4某农科院对甲、乙两种甜玉米各用10块相
2、同条件的试验田进行试验,得到两个品种每亩产量的两组数据,其方差分别为,则 ( )A甲比乙的产量稳定B乙比甲的产量稳定C甲、乙的产量一样稳定D无法确定哪一品种的产量更稳定5抛物线y=x2+kx1与x轴交点的个数为( )A0个B1个C2个D以上都不对6如图,该几何体的主视图是( )ABCD7顺次连接边长为的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于( )ABCD8如图,直线l1l2l3,两条直线AC和DF与l1,l2,l3分别相交于点A、B、C和点D、E、F,则下列比例式不正确的是()ABCD9如图,已知双曲线上有一点,过作垂直轴于点,连接,则的面积为( )
3、ABCD10一元二次方程的解是( )ABC,D,二、填空题(每小题3分,共24分)11如图,过原点的直线与反比例函数()的图象交于,两点,点在第一象限点在轴正半轴上,连结交反比例函数图象于点为的平分线,过点作的垂线,垂足为,连结若是线段中点,的面积为4,则的值为_12在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为,那么角的余弦值是_13将抛物线y5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是_14我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余
4、弦值等于_15小丽微信支付密码是六位数(每一位可显示09),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是_.16将抛物线y=2x2+1向左平移三个单位,再向下平移两个单位得到抛物线_;17如图,在ABCD中,AB为O的直径,O与DC相切于点E,与AD相交于点F,已知AB=12,C=60,则 的长为 18圆锥的底面半径为6,母线长为10,则圆锥的侧面积为_cm2三、解答题(共66分)19(10分)某校九年级(1)班甲、乙两名同学在5次引体向上测试中的有效次数如下:甲:8,8,7,8,1.乙:5,1,7,10,1甲、乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差
5、甲880.4乙13.2根据以上信息,回答下列问题:(1)表格中_,_,_(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是_.班主任李老师根据去年比赛的成绩(至少1次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是_(3)乙同学再做一次引体向上,次数为n,若乙同学6次引体向上成绩的中位数不变,请写出n的最小值20(6分)已知(1)求的值;(2)若,求的值21(6分)如图,已知是坐标原点,、两点的坐标分别为,将绕点逆时针旋转度,得到,画出,并写出、两点的对应点、的坐标,22(8分)已知,(如图),点,分别为射线上的动点(点C
6、、E都不与点B重合),连接AC、AE使得,射线交射线于点,设,.(1)如图1,当时,求AF的长.(2)当点在点的右侧时,求关于的函数关系式,并写出函数的定义域.(3)连接交于点,若是等腰三角形,直接写出的值.23(8分)用适当的方法解下列一元二次方程(1);(2)24(8分)甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和1利用画树状图或列表求下列事件的概率(1)从两个口袋中各随机取出1个小球,恰好两个都是奇数;(2)若丙口袋中装有2个相同的小球,它们分别写有数字6和7,从三个口袋中各随机取出一个小球,恰好三个都是奇数25(10分)学生会
7、要举办一个校园书画艺术展览会,为国庆献礼,小华和小刚准备将长AD为400cm,宽AB为130cm的矩形作品四周镶上彩色纸边装饰,如图所示,两人在设计时要求内外两个矩形相似,矩形作品面积是总面积的,他们一致认为上下彩色纸边要等宽,左右彩色纸边要等宽,这样效果最好,请你帮助他们设计彩色纸边宽度26(10分)如图,己知是的直径,切于点,过点作于点,交于点,连接、.(1)求证:是的切线:(2)若,求阴影部分面积. 参考答案一、选择题(每小题3分,共30分)1、D【分析】根据中心对称图形的概念和识别【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不
8、是轴对称图形故选D【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形2、B【分析】由平行可得,再由条件可求得,代入可求得BC【详解】解:DEBC,且DE4cm,解得:BC12cm,故选:B【点睛】本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段成比例是解题的关键3、A【分析】根据长方形的面积公式结合多项式除以多项式运算法则解题即可【详解】长方形的面积为,且一边长为,另一边的长为故选:A【点睛】本题考查多项式除以单项式、长方形的面积等知识,是常见考点,难度较易,掌握相关知识是解题关键4、B【分析】由,可得到,根据方差的意义得到乙的波动小
9、,比较稳定【详解】,乙比甲的产量稳定故选:B【点睛】本题考查了方差的意义:方差反映一组数据在其平均数左右的波动大小,方差越大,波动就越大,越不稳定,方差越小,波动越小,越稳定5、C【分析】设y=0,得到一元二次方程,根据根的判别式判断有几个解就有与x轴有几个交点【详解】解:抛物线y=x2+kx1,当y=0时,则0=x2+kx1,=b24ac=k2+40,方程有2个不相等的实数根,抛物线y=x2+kx与x轴交点的个数为2个,故选C6、C【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中【详解】解:从正面看易得是1个大正方形,大正方形左上角有个小正方形故答案选:C【点睛】本
10、题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.7、A【分析】作APGH于P,BQGH于Q,由正六边形和等边三角形的性质求出GH=PG+PQ+QH=9cm,由等边三角形的面积公式即可得出答案【详解】如图所示:作APGH于P,BQGH于Q,如图所示:GHM是等边三角形,MGH=GHM=60,六边形ABCDEF是正六边形,BAF=ABC=120,正六边形ABCDEF是轴对称图形,G、H、M分别为AF、BC、DE的中点,GHM是等边三角形,AG=BH=3cm,MGH=GHM=60,AGH=FGM=60,BAF+AGH=180,ABGH,作APGH于P,BQGH于Q,PQ=AB=
11、6cm,PAG=90-60=30,PG=AG=cm,同理:QH=cm,GH=PG+PQ+QH=9cm,GHM的面积=GH2=cm2;故选:A【点睛】此题主要考查了正六边形的性质、等边三角形的性质及三角形的面积公式等知识;熟练掌握正六边形和等边三角形的性质是解题的关键8、D【解析】试题分析:根据平行线分线段成比例定理,即可进行判断.解:l1l2l3,.选项A、B、C正确,D错误.故选D.点睛:本题是一道关于平行线分线段成比例的题目,掌握平行线分线段成比例的相关知识是解答本题的关键9、B【分析】根据已知双曲线上有一点,点纵和横坐标的积是4,的面积是它的二分之一,即为所求.【详解】解:双曲线上有一点
12、,设A的坐标为(a,b),b=ab=4的面积=2故选:B.【点睛】本题考查了反比例函数的性质和三角形的面积,熟练掌握相关知识是解题的关键.10、C【解析】用因式分解法解一元二次方程即可.【详解】 或 ,故选C.【点睛】本题主要考查一元二次方程的解,掌握解一元二次方程的方法是解题的关键.二、填空题(每小题3分,共24分)11、【分析】连接OE,CE,过点A作AFx轴,过点D作DHx轴,过点D作DGAF;由AB经过原点,则A与B关于原点对称,再由BEAE,AE为BAC的平分线,可得ADOE,进而可得SACE=SAOC;设点A(m, ),由已知条件D是线段AC中点,DHAF,可得2DH=AF,则点D
13、(2m,),证明DHCAGD,得到SHDC=SADG,所以SAOC=SAOF+S梯形AFHD+SHDC=k+k+=8;即可求解;【详解】解:连接OE,CE,过点A作AFx轴,过点D作DHx轴,过点D作DGAF,过原点的直线与反比例函数y=(k0)的图象交于A,B两点,A与B关于原点对称,O是AB的中点,BEAE,OE=OA,OAE=AEO,AE为BAC的平分线,DAE=AEO,ADOE,SACE=SAOC,D是线段AC中点,的面积为4,AD=DC,SACE=SAOC=8,设点A(m, ),D是线段AC中点,DHAF,2DH=AF,点D(2m,),CHGD,AGDH,ADG=DCH,DAG=CD
14、H,在AGD和DHC中, SHDC=SADG,SAOC=SAOF+S梯形AFHD+SHDC=k+(DH+AF)FH+SHDC=k+k+=8;k=8,k= .故答案为.【点睛】本题考查反比例函数k的意义;借助直角三角形和角平分线,将ACE的面积转化为AOC的面积是解题的关键12、【解析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.【详解】点A坐标为(3,4),OA=5,cos=,故答案为【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.13、y5(x+2)21【分析
15、】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可【详解】解:抛物线y=-5x2先向左平移2个单位长度,再向下平移1个单位长度,新抛物线顶点坐标为(-2,-1),所得到的新的抛物线的解析式为y=-5(x+2)2-1故答案为:y=-5(x+2)2-1【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键14、或【解析】将情况分为腰比底边长和腰比底边短两种情况来讨论,根据题意求出底边的长进而求出余弦值即可.【详解】当腰比底边长长时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为2,所以这个等边三角形底角的余弦值为;当腰比
16、底边长短时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为8,所以这个等边三角形底角的余弦值为.【点睛】本题主要考查对新定义的理解能力、角的余弦的意义,熟练掌握角的余弦的意义是解答本题的关键.15、【分析】根据题意可知密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,直接利用概率公式求解即可【详解】解:密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,小丽能一次支付成功的概率是故答案为:【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=16、【分析】根据抛物线
17、平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键.17、【详解】解:如图连接OE、OFCD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360DDFODEO=30,的长=故答案为考点:切线的性质;平行四边形的性质;弧长的计算18、60【详解】圆锥的侧面积=底面半径母线长,把相应数值代入即可求解解:圆锥的侧面积=610=60cm1三、解答题(共66分)19、(1)2;2;1(2)
18、甲的方差较小,比较稳定;乙的中位数是1,众数是1,获奖可能性较大.(3).【分析】(1)根据中位数、众数、平均数的计算方法分别计算结果,得出答案;(2)选择甲,只要看甲的方差较小,发挥稳定,选择乙由于乙的众数较大,中位数较大,成绩在中位数以上的占一半,获奖的次数较多;(3)加入一次成绩为n之后,计算6个数的平均数、众数、中位数,做出判断【详解】解:(1)甲的成绩中,2出现的次数最多,因此甲的众数是2,即b=2,(5+1+7+1+10)5=2即a=2,将乙的成绩从小到大排列为5,7,1,1,10,处在第3位的数是1,因此中位数是1,即c=1,故答案为:2,2,1(2)甲的方差为0.4,乙的方差为
19、3.2,选择甲的理由是:甲的方差较小,比较稳定,选择乙的理由是:乙的中位数是1,众数是1,获奖可能性较大, (3)若要中位数不变,按照从小到大排列为:5,7,1,1,n,10,或5,7,1,1,10,n,可得n最小值为1.【点睛】本题考查了平均数、中位数、众数的意义和计算方法,明确各个统计量的意义,反映数据的特征以及计算方法是正确解答的关键20、(1)3;(2)a=-4,b=-6,c=-8.【解析】(1)设,可得,代入原式即可解答;(2)把,带入(2)式即可计算出k的值,从而求解.【详解】(1)设,则,(2)由(1)解得,【点睛】本题考查比例的性质,设是解题关键.21、详见解析;点,的坐标分别
20、为,【分析】利用网格特点和旋转的性质画出B、C的对应点B1、C1即可【详解】解:如图,为所作,点,的坐标分别为,【点睛】本题考查了画图性质变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形22、(1);(2);(3)或或.【分析】过点作于N,利用B的余弦值可求出BN的长,利用勾股定理即可求出AN的长,根据线段的和差关系可得CN的长,利用勾股定理可求出AC的长,根据AD/BC,AD=BC即可证明四边形ABCD是平行四边形,可得B=D,进而可证明ABCADF,根据相似三角形的性质即可求出A
21、F的长;(2)根据平行线的性质可得,根据等量代换可得,进而可证明ABCABE,根据相似三角形的性质可得,可用x表示出BE、CE的长,根据平行线分线段成比例定理可用x表示出的值,根据可得y与x的关系式,根据x0,CE0即可确定x的取值范围;(3)分PA=PD、AP=AD和AD=PD三种情况,根据BE=及线段的和差关系,分别利用勾股定理列方程求出x的值即可得答案.【详解】(1)如图,过点作于N,AB=5,在中,=5=3,AN=4,BC=x=4,CN=BC-BN=4-3=1,在中,AD=4,BC=x=4,AD=BC,四边形为平行四边形,又,ABCADF,解得:,(2),又B=B,ABCABE,AD/
22、BC,x0,CE=0,0 x5,(3)如图,当PA=PD时,作AHBM于H,PGAD于G,延长GP交BM于N,PA=PD,AD=4,AG=DG=2,ADB=DAE,AD/BE,GNBE,DAE=AEB,ADB=DBE,DBE=AEB,PB=PE,BN=EN=BE=,AB=5,BH=ABcosABH=3,AHBM,GNMB,GNAD,AHN=GNH=NGA=90,四边形AHNG是矩形,HN=AG=2,BN=BH+HN=3+2=5,=5,解得:x=.如图,当AP=AD=4时,作AHBM于H,ADB=APD,AD/BM,ADB=DBC,APD=BPE,DBC=BPE,BE=PE=,cosABC=,A
23、B=5,BH=3,AH=4,在RtAEH中,(4+)2=42+(3-)2,解得:x=,如图,当AD=PD=4时,作AHBM于H,DNBM于N,DAP=DPA,AD/BM,DAP=AEB,APD=BPE,BPE=AEB,BP=BE=,cosABC=,AB=5,BH=3,AH=4,AD/BM,AHBM,DNBM,四边形AHND是矩形,DN=AH=4,HN=AD=4,中RtBND中,(4+)2=42+(4+3)2,解得:x=,综上所述:x的值为或或.【点睛】本题考查相似三角形的综合,熟练掌握锐角三角函数的定义、平行线的性质、等腰三角形的性质及相似三角形的判定与性质,灵活运用分类讨论的思想是解题关键.23、(1),;(2),【分析】(1)把原方程化成一元二次方程的一般形式,利用公式法解方程即可;(2)按照平方差公式展开、合并,再利用十字相乘法解方程即可【详解】(1)整理得:,(2)整理得:,x+4=0或x-2=0,解得:,【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键24、(1)图表见解析,;(2)图表见解析,【分析】(1)通过列表可得出所有等可能的结果数与取出的两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教育行业人才流失原因与吸引机制创新路径研究报告
- 2025年植物基因编辑技术在转基因植物抗病虫害育种中的应用成果鉴定报告
- 自卸吊车买卖合同协议书
- 泵车转卖合同协议书范本
- 防尘布工地销售合同范本
- 理疗店合伙协议合同范本
- 物业小区的广告合同协议
- 法院婚内财产协议书模板
- 竹制半成品采购合同范本
- 罗非鱼鱼苗订购合同范本
- 2025年施工员-土建方向-岗位技能(施工员)考试题库
- 河南省安阳市林州市2024-2025学年八年级下学期期末历史试卷 (含答案)
- 胸痛单元建设课件介绍
- 超市消防安全管理制度制度
- 酒店服务流程与空间布局优化
- DB11∕T 2380-2024 城市轨道交通工程盖挖法施工技术规程
- (2025)医疗护理员理论考试试题含答案
- 2025年贵州省中考英语真题含答案
- 2025年广西中考语文试题卷(含答案)
- 建设工程法律培训
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
评论
0/150
提交评论