分析化学中误差和数据处理_第1页
分析化学中误差和数据处理_第2页
分析化学中误差和数据处理_第3页
分析化学中误差和数据处理_第4页
分析化学中误差和数据处理_第5页
已阅读5页,还剩117页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关于分析化学中的误差与数据处理第1页,共122页,2022年,5月20日,11点22分,星期四Analytical Chemistry 第3章分析化学中的误差与数据处理第2页,共122页,2022年,5月20日,11点22分,星期四 公平、公正,实事求是!无时不在,无处不有。第3页,共122页,2022年,5月20日,11点22分,星期四3.1.1 真值xT (True value) 某一物理量本身具有的客观存在的真实值。真值是未知的、客观存在的量。但在特定情况下可以认为是已知的:1.理论真值(如化合物的理论组成);2.计量学约定真值(如国际计量大会确定的长度、质量、物质的量单位等)由标准参考

2、物质证书上给出的数值或有经验的人用可靠方法多次测定的平均值,确认消除系统误差 ;3.相对真值,认定精度高一个数量级的测量值作为低一级精度的测量值的真值,这种真值是相对比较而言的(如科学实验中使用的标准试样及管理试样中组分的含量等)。3.1分析化学中的误差第4页,共122页,2022年,5月20日,11点22分,星期四 精度:顾名思义为精确度,表示近似精确的程度(精确到什么位数),所得值的小数位数越多,越精确。一般来说,精确度代表了量具的最小读数,测量仪器都有精度的要求。比如分析天平如果精度是千分之一,就是指天平可以称准至0.001克,即在0.001克位以前是准确数字而之后如果还有一位则是估读数

3、。第5页,共122页,2022年,5月20日,11点22分,星期四 3.1.2 平均值( )Mean value n 次测量值的算术平均值虽不是真值,但比单次测量结果更接近真值,它表示一组测定数据的集中趋势,是对真值的最佳估计: 3.1.3 中位数(xM)Median value 将一组测量数据按从小到大的顺序排列,当测量值的个数n是奇数时,中间一个数据即为中位数xM;当测量值的个数n为偶数时,中位数为中间相邻两个测量值的平均值。它的优点是能简单直观说明一组测量数据的结果,且不受两端具有过大误差数据的影响;缺点是不能充分利用数据,因而不如平均值准确。第6页,共122页,2022年,5月20日,

4、11点22分,星期四3.1.4公差 公差是生产部门对分析结果误差允许的一种限量,如果误差超出允许的公差范围,该项分析工作就应重做。 确定公差范围的因素:实际情况对分析结果准确度的要求。试样组成及待测组分含量。各种分析方法所能达到的准确度。第7页,共122页,2022年,5月20日,11点22分,星期四3.1.5误差与偏差误差(E)Error,表示准确度高低的量。 对B物质客观存在量为xT 的分析对象进行分析,得到n个个别测定值 x1,x2,x3, xn,对n 个测定值进行平均,得到测定结果的平均值,那么: 个别测定值的误差为: 测定结果的绝对误差(Absolute error):表示测量值与真

5、值(xT)的差。 测定结果的相对误差(Relative error):表示误差在真值中所占的百分率。 测量值大于真实值,误差为正误值;测量值小于真实值,误差为负误值。误差越小,测量值的准确度越好;误差越大,测量值的准确度越差。第8页,共122页,2022年,5月20日,11点22分,星期四偏差(deviation): 表示精密度高低的量。偏差小,精密度高。 偏差的表示有: 单次测定的偏差 单次测定结果的平均偏差 ,表示各单次测定偏差的绝对值的平均值。 单次测定结果的相对平均偏差 。 极差或全距(range,R)R = xmax xmin,是一组测量数据中最大值与最小值之差。用该法表示偏差,简单

6、直观,便于运算。 标准偏差(standard deviation, s) 相对标准偏差 (relative standard deviation,RSD,sr也称变异系数CV(Coefficient of Variance)第9页,共122页,2022年,5月20日,11点22分,星期四 3.1.6 准确度与精密度 分析结果的衡量指标准确度 (Accuracy ) 准确度表征测量值与真实值的符合程度。准确度用误差表示。精密度 (precision) 精密度表征平行测量值的相互符合程度。精密度用偏差表示。第10页,共122页,2022年,5月20日,11点22分,星期四例1:滴定的体积误差VEE

7、r20.00 mL 0.02 mL 0.1%2.00 mL 0.02 mL 1%例2:称量误差mEEr0.2000 g 0.2 mg 0.1%0.0200 g 0.2 mg 1%滴定剂体积应为2030mL称样质量应大于0.2g第11页,共122页,2022年,5月20日,11点22分,星期四例3:测定含铁样品中w(Fe), 比较结果的准确度。 A. 铁矿中,B. Li2CO3试样中,A.B.第12页,共122页,2022年,5月20日,11点22分,星期四例4:基准物:硼砂 : Na2B4O710H2O Mr=381 碳酸钠 Na2CO3 :Mr=106 选那一个更能使测定结果准确度高? (不

8、考虑其他原因,只考虑称量)第13页,共122页,2022年,5月20日,11点22分,星期四准确度与精密度的关系例:A、B、C、D 四个分析工作者对同一铁标样(WFe=37.40%)中的铁含量进行测量,得结果如图 示,比较其准确度与精密度。36.00 36.50 37.00 37.50 38.00测量点平均值真值DCBA表观准确度高,精密度低准确度高,精密度高准确度低,精密度高准确度低,精密度低(不可靠)第14页,共122页,2022年,5月20日,11点22分,星期四第15页,共122页,2022年,5月20日,11点22分,星期四 结论:1.精密度是保证准确度的前提。2.精密度高,不一定准

9、确度就高。3.两者的差别主要是由于系统误差的存在导致准确度差;随机误差的存在导致精密度差。 4.准确度反映了测量结果的正确性,精密度反映了测量结果的重现性。第16页,共122页,2022年,5月20日,11点22分,星期四3.1.7系统误差和随机误差 在定量分析中,对于各种原因导致的误差,根据误差的来源和性质的不同,可以分为:系统误差(systematic error):由比较固定的原因引起的误差。 随机误差(randon error):随机偶然,难以控制,不可避免的误差。 过失误差( gross error):操作者粗心大意引起的误差。又叫错误误差。第17页,共122页,2022年,5月20

10、日,11点22分,星期四系统误差与随机误差的比较项目系统误差(可测误差)随机误差(偶然误差产生原因固定因素,有时不存在不定因素,总是存在分类方法误差、仪器与试剂误差、主观误差环境的变化因素、主观的变化因素等性质重现性、单向性(或周期性)、可测性服从概率统计规律、不可测性影响准确度精密度消除或减小的方法校正增加测定的次数第18页,共122页,2022年,5月20日,11点22分,星期四(一) 系统误差 1 特点: (1)对分析结果的影响比较恒定(单向性); (2)在同一条件下,重复测定, 重复出现(重复性) ; (3)影响准确度,不影响精密度; (4)可以消除。 (5)可以测定(可测性)。第19

11、页,共122页,2022年,5月20日,11点22分,星期四2产生的原因(1)方法误差选择的方法不够完善 例: 重量分析中沉淀的溶解损失 滴定分析中指示剂选择不当(2)仪器误差仪器本身的缺陷 例: 天平两臂不等,砝码未校正 滴定管,容量瓶未校正 (3)试剂误差所用试剂有杂质 例:去离子水不合格 试剂纯度不够; (含待测组份或干扰离子)(4)主观误差操作人员主观因素造成 例:对指示剂颜色辨别偏深或偏浅 滴定管读数不准第20页,共122页,2022年,5月20日,11点22分,星期四(二) 偶然误差 1. 特点: (1)不恒定; (2)难以校正; (3)服从正态分布 2. 产生的原因 (1)偶然因

12、素; (2)滴定管等读数(三) 过失误差第21页,共122页,2022年,5月20日,11点22分,星期四(四)误差的减免系统误差的减免 1.方法误差 采用标准方法,对照实验(标准方法,标准样品,标准加入) 2.仪器误差 校正仪器(绝对,相对) 3.试剂误差 作空白实验 偶然误差的减免 不可避免,服从统计规律,增加平行测定的次数 过失误差的减免 确系发生,数据必舍。提高工作责任心!重做!第22页,共122页,2022年,5月20日,11点22分,星期四 3.1.8 误差的传递分析结果通常是经过一系列测量步骤之后获得的,其中每一步骤的测量误差都会反映到分析结果中去。设分析结果Y 由测量值A、B、

13、C 计算获得,测量值的绝对误差分别为 EA、EB、EC,相对误差分别为EA/A、EB/B、Ec/C, 标准偏差分别为SA、SB、SC,计算结果Y的绝对误差为EY,相对误差为EY/Y,标准偏差为sY,ki为常数。 第23页,共122页,2022年,5月20日,11点22分,星期四系统误差的传递1.加减法 2.乘除法 3.指数关系 4.对数关系 Y=m An Y=mlg A EY/Y=n EA/A EY = 0.434 m EA/A第24页,共122页,2022年,5月20日,11点22分,星期四 随机误差的传递 1.加减法 2.乘除法3.指数关系 4.对数关系 第25页,共122页,2022年,

14、5月20日,11点22分,星期四极值误差 第26页,共122页,2022年,5月20日,11点22分,星期四3.2有效数字及其运算规则1. 有效数字的意义及位数2. 有效数字的修约规则3. 运算规则4. 分析化学中数据记录及结果表示第27页,共122页,2022年,5月20日,11点22分,星期四 实验过程中常遇到两类数: (1)数目:如测定次数;倍数;系数;分数。 (2)测量值或计算值。数据的位数与测定准确度有关。记录的数不仅表示数量的大小,而且要正确地反映测量的精确程度。如: 结果 绝对偏差 相对偏差 有效数字位数 0.51800 0.00001 0.002% 5 0.5180 0.000

15、1 0.02% 4 0.518 0.001 0.2% 33.2.1 有效数字的意义及位数第28页,共122页,2022年,5月20日,11点22分,星期四有效数字significant figure 实际能测到的数字。在有效数字中, 只有最后一位数是不确定的、可疑的。有效数字的位数由仪器准确度决定,它直接影响测定的相对误差。 分析结果中的有效数字是:实际测定的数值包含一位不确定数字(可疑数字或欠准数字)。第29页,共122页,2022年,5月20日,11点22分,星期四有效位数: 从数值左方非零数字算起到最后一位可疑数字,确定有效位数的位数。可疑数字: 通常理解为,它可能有1或0.5单位的误差

16、(不确定性)。第30页,共122页,2022年,5月20日,11点22分,星期四 有效数字的记录: 1.几个重要物理量的测量精度: 天平(1/10000): Ea=0.0001g 滴定管: 0.01mL pH计: 0.01单位 光度计: 0.001单位 电位计: 0.0001 V(E)第31页,共122页,2022年,5月20日,11点22分,星期四 m 台秤(称至0.1g):12.8 g(3), 0.5 g(1), 1.0 g(2) 分析天平(称至0.1 mg):12.8218 g(6), 0.5024 g(4), 0.0500 g(3) V 滴定管(量至0.01 mL):26.32 mL(

17、4),3.97 mL(3); 容量瓶:100.0 mL(4),250.0 mL (4); 移液管:25.00 mL(4); 量筒(量至1mL或0.1mL):26mL(2), 4.0mL(2)。第32页,共122页,2022年,5月20日,11点22分,星期四数据中零的作用:(1)数字零在数据中具有双重作用: 作普通数字用:如 0.5180,4位有效数字, 可记为 5.18010-1;作定位用如 0.0518,3位有效数字,可记为5.1810-2。2.几项规定:(2)数字前的0不计,数字后的0计入 :0.02450(4位)。(3)数字后的0含义不清楚时, 最好用指数形式表示 : 1000 (1.

18、0103 ,1.00103,1.000 103 )。第33页,共122页,2022年,5月20日,11点22分,星期四 零的具体作用: *在1.0008中,“0” 是有效数字; *在0.0382中,“0”定位作用,不是有效数字; *在0.0040中,前面3个“0”不是有效数字, 后面一个“0”是有效数字。 *在3600中,一般看成是4位有效数字,但它可能是2位或3位有效数字,分别写3.6103,3.60103或3.600103较好。第34页,共122页,2022年,5月20日,11点22分,星期四自然数可看成具有无限多位数(如倍数关系、分数关系);常数亦可看成具有无限多位数,如: 。改变单位不

19、改变有效数字的位数,如:24.01 mL 24.0110-3 L 0.0250 g 25.0 mg 2.50104 g第35页,共122页,2022年,5月20日,11点22分,星期四数据的第一位数大于等于8 的, 可按多一位有效数字对待,如 9.45104, 95.2%, 8.6 。对数与指数的有效数字位数按尾数计, 如 10-2.34 (2位); pH=11.02, 则H+=9.510-12 mol/L。误差(任何形式)只需保留12位。化学平衡计算中,结果一般为两位有效数字(由于k值一般为两位有效数字)。常量分析法(10%)一般为4 位有效数字(Er0.1%),半微量分析法(1%10%)一

20、般为3 位有效数字,微量分析(1%)为23位。 第36页,共122页,2022年,5月20日,11点22分,星期四数字修约(rounding date)是指舍弃多余数字的过程,按照国家标准采用“四舍六入五成双”的规则。“四舍六入五成双”规则:当测量值中被修约的数字等于或小于4时,该数字舍去;等于或大于6时,进位;等于5时(5后面无数字或是0时),如进位后末位数字为偶数则进位,舍去后末位数字为偶数则舍去。5后面有不是0的数字时,则进位。修约数字时,只允许对原测量值一次修约到所需要的位数,不能分次修约。8.5498.5 (8.5498.558.6是错的) 3.2.2 有效数字的修约规则第37页,共

21、122页,2022年,5月20日,11点22分,星期四 有效数字的修约: 0.32554 0.3255 0.36236 0.3624 10.2150 10.22 150.65 150.6 75.5 76 16.0851 16.09第38页,共122页,2022年,5月20日,11点22分,星期四3.2.3 运算规则加减法 几个数据相加或相减时,有效数字位数的保留,应以小数点后位数最少的数据为准,其他的数据均修约到这一位。其根据是小数点后位数最少的那个数的绝对误差最大。例:0.0121+25.64+1.05782=? 绝对误差 0.0001 0.01 0.00001 在加合的结果中总的绝对误差值

22、取决于25.64。 0.01+25.64+1.06=26.71一般计算方法: 先修约,后计算。第39页,共122页,2022年,5月20日,11点22分,星期四乘除法 几个数据相乘除时,有效数字的位数应以几个数据中有效数字的位数最少的那个数据为准。其根据是有效数字位数最少的那个数的相对误差最大。例: 0.0121 25.64 1.05782=? 相对误差 0.8% 0.4% 0.009% 结果的相对误差取决于 0.0121,因它的相对误差最大,所以 0.012125.61.06=0.328一般计算方法: 可以先修约,后计算;也可以先计算,后修约(计算器)。第40页,共122页,2022年,5月

23、20日,11点22分,星期四复杂运算(对数、乘方、开方等) 例:pH=5.02, H+? pH5.01 时, H+9.772410-6 mol L-1 pH5.02 时, H+9.549910-6 mol L-1 pH5.03时, H+9.332510-6 mol L-1 H+ 9.510-6 mol L-1第41页,共122页,2022年,5月20日,11点22分,星期四报告结果: 与方法精度一致, 由误差最大的一步确定。如 :称样0.0320 g, 则w(NaCl) = 99%(3位); 称样0. 3200 g, 则w(NaCl) = 99.2%(4位); 光度法测w(Fe), 测量误差约

24、5%, 则 w(Fe) = 0.064% (2位),要求称样 准至3位有效数字即可。 合理安排操作程序,实验既准又快!第42页,共122页,2022年,5月20日,11点22分,星期四1.总体与样本总体(或母体):在统计学中,对于所考察的对象的某特性值的全体,称为总体。个体:组成总体的每个单元称为个体。样本(子样):自总体中随机抽取的一组测量值(自总体中随机抽取的一部分个体)称为样本。样本容量:样品中所包含测量值(个体)的数目称为样本容量,用n表示。 3.3分析化学中的数据处理第43页,共122页,2022年,5月20日,11点22分,星期四例如:分析延河水总硬度,依照取样规则,从延河中取来供

25、分析用的2000 mL样品水,这2000mL样品水是供分析用的总体,如果从样品水中取出20个试样进行平行分析,得到20个分析结果,则这组分析结果就是延河样品水的一个随机样本,样本容量为20。第44页,共122页,2022年,5月20日,11点22分,星期四2.随机变量 来自同一总体的无限多个测量值都是随机出现的,叫做随机变量。 第45页,共122页,2022年,5月20日,11点22分,星期四3.3.1 随机误差的正态分布频数分布(frequency distribution)正态分布(normal distribution )第46页,共122页,2022年,5月20日,11点22分,星期四

26、 1.频数分布: 测定某样品100次,因有偶然误差存在,故分析结果有高有低,有两头小、中间大的变化趋势,即在平均值附近的数据出现的机会最多。第47页,共122页,2022年,5月20日,11点22分,星期四 频率密度直方图和频率密度多边形87%(99.6%0.3)99.6%(平均值)第48页,共122页,2022年,5月20日,11点22分,星期四例:分析某镍试样,共测定90个数据(输至Excel中)粗看,杂乱无章细看,大部分介于1.57-1.67;小至1.49,大至1.74极少;基本上是围绕平均值1.62上下波动。第49页,共122页,2022年,5月20日,11点22分,星期四在单元格K1

27、-K9中分别输入1.515;1.545;1.575;1.605;1.635; 1.665;1.695;1.725;1.755(意思是把上面数据分成9组) 为避免骑墙现象,组界值 比测定值多取一位。选取【工具】、【数据分析】,再选【直方图】并输入相应的数值,可画出频率或频数直方图。第50页,共122页,2022年,5月20日,11点22分,星期四1.从横轴看:对称,正、负误差出现的机会相等;2.从纵轴看:大误差比小误差出现的机会少,极大的 误差出现的机会极少。规律:测量数据既集中又分散!平均值1.62第51页,共122页,2022年,5月20日,11点22分,星期四特点:离散特性 用标准偏差s来

28、表示。 计算标准偏差时,对单次测量值的偏差加以平方,这样做不仅能避免单次测量偏差相加时正负抵消,更重要的是大偏差能显著地反应出来,因而可以更好地说明数据的分散程度。当测定次数为无限多次时,各测量值对总体平均值的偏离,用总体标准偏差来表示:第52页,共122页,2022年,5月20日,11点22分,星期四集中趋势 用算术平均值 来表示: 当测定次数无限增多时,所得平均值即为总体平均值: 若没有系统误差,则总体平均值就是真值xT, 此时,总体平均偏差为:用统计学方法可以证明:当测定次数非常多(大于20)时,总体标准偏差与总体平均偏差有下列关系:=0.7970.80。但应当指出:当测定次数较少时,与

29、之间的关系就与此式相差颇大了。第53页,共122页,2022年,5月20日,11点22分,星期四有限次数!无限次数!第54页,共122页,2022年,5月20日,11点22分,星期四二、正态分布:测量数据一般符合正态分布规律,即高斯分布。-总体平均值,表示无限次测量值集中的趋势。-总体标准偏差,表示无限次测量分散的程度。y-概率密度x-个别测量值(x-)- 随机误差 正态分布是法国数学家A. de Moivre 提出的,德国数学家Gauss在研究天文学中的观测误差时导出的正态分布曲线即Gauss曲线。所以正态分布又叫Gauss误差定律。正态分布的密度函数是:第55页,共122页,2022年,5

30、月20日,11点22分,星期四 正态分布曲线规律:* x=时,y值最大,此即分布曲线的最高点。说明误差为零的测量值出现的概率最大。体现了测量值的集中趋势。大多数测量值集中在算术平均值的附近,算术平均值是最可信赖值,能很好反映测量值的集中趋势。反映测量值分布的集中趋势。* 曲线以x=这一直线为其对称轴,说明正误差和负误差出现的概率相等。* 当x趋于-或+时,曲线以轴为渐近线。即小误差出现的概率大,大误差出现的概率小,出现很大误差的概率极小,趋于零。* 越大,测量值落在附近的概率越小。即精密度越差时,测量值的分布就越分散,正态分布曲线也就越平坦。反之,越小,测量值的分散程度就越小,正态分布曲线也就

31、越尖锐。反映测量值分布的分散程度。第56页,共122页,2022年,5月20日,11点22分,星期四特点:极大值在 x = 处。拐点在 x = 处。于x = 对称。x 轴为渐近线。 y-概率密度 x-测量值 -总体平均值(x-): 随机误差 - 总体标准偏差第57页,共122页,2022年,5月20日,11点22分,星期四随机误差的规律:定性:小误差出现的概率大, 大误差出现的概率小, 特大误差出现的概率极小;正、负误差出现的概率相等。定量:某段曲线下的面积则为概率。概率密度:?第58页,共122页,2022年,5月20日,11点22分,星期四1=0.047 2=0.023 x随机误差的正态分

32、布测量值的正态分布0 x- 正态分布曲线 N( ,2)曲线的形状取决于 和2, 和2确定了, N( ,2)也就定了。标准正态分布曲线N(0,1)后面详细介绍。第59页,共122页,2022年,5月20日,11点22分,星期四总体标准偏差 相同,总体平均值不同。总体平均值相同,总体标准偏差不同。原因:1、总体不同。2、同一总体,存在系统误差。原因:同一总体,精密度不同。第60页,共122页,2022年,5月20日,11点22分,星期四 不论怎样,与不同,图形就不同。应用起来不方便。解决方法:坐标变换!第61页,共122页,2022年,5月20日,11点22分,星期四标准正态分布曲线第62页,共1

33、22页,2022年,5月20日,11点22分,星期四令:可变为: 第63页,共122页,2022年,5月20日,11点22分,星期四68.3%95.5%99.7%u -3s -2s -s 0 s 2s 3s x-m m-3s m-2s m-s m m+s m+2s m+3s x y标准正态分布曲线 N (0,1)第64页,共122页,2022年,5月20日,11点22分,星期四标准正态分布曲线N(0,1)就是以为原点,为单位的曲线,它对于不同的和的任何测量值都是通用的,如上图所示。第65页,共122页,2022年,5月20日,11点22分,星期四曲线下面积:| u |S2S0.6740.250

34、01.0000.34130.6831.6450.45001.9600.47500.9502.0000.47732.5760.49870.9903.0000.49870.9970.5001.000正态分布概率积分表y第66页,共122页,2022年,5月20日,11点22分,星期四随机误差的区间概率 正态分布曲线与横坐标-到+之间所夹的面积,代表所有数据出现概率的总和,其值应为1,即概率P为:第67页,共122页,2022年,5月20日,11点22分,星期四| u |面积| u 面积| u 面积| u 面积0.6740.25001.0000.34131.6450.45001.9600.47502

35、.0000.47732.5760.49503.0000.49870.50000.5000.19151.5000.43322.5000.4938随机误差出现的区间u(以为单位)测量值x出现的区间概率%(-1, +1) -1 , +1 68.3(-1.96, +1.96) -1.96 , +1.96 95.0(-2, +2) -2 , +2 95.5(-2.58, 2.58) -2.58 , +2.58 99.0(-3, +3) -3 , +3 99.7测量值与随机误差的区间概率正态分布概率积分表(部分数值)第68页,共122页,2022年,5月20日,11点22分,星期四例1. 已知某试样中质量

36、分数的标准值为1.75%,=0.10%,又已知测量时没有系统误差,求分析结果落在(1.750.15)%范围内的概率。解:例2. 同上例,求分析结果大于2.00%的概率。解:属于单边检验问题。 查表:u=1.5 时,概率为:2 0.4332 = 0.866 = 86.6 %查表:u 2.5 时,概率为:0.5 0.4938 = 0.0062 = 0.62% 第69页,共122页,2022年,5月20日,11点22分,星期四 例3:根据正态分布概率积分表, 计算单次测量值的偏差绝对值分别小于1 和大于1 的概率。解:(1)单次测量值的偏差绝对值小于1 的概率,即:第70页,共122页,2022年,

37、5月20日,11点22分,星期四u=1,面积0.3413,故P=0.34132=68.26%查表:(2)单次测量值的偏差绝对值大于1 的概率,即:第71页,共122页,2022年,5月20日,11点22分,星期四 例4:已知某金矿试样中含金量的标准值为12.2 g/T, = 0.2 g/T, 求分析结果小于11.6 g/T的概率。解: 既然不是绝对值小于,而仅仅是小于,属单边检验。求x11.6的概率, 为常数;也就是求u t,f,存在显著性差异,否则不存在显著性差异。 通常以95%的置信度为检验标准,即显著性水准为5%。第93页,共122页,2022年,5月20日,11点22分,星期四例:用某

38、种新方法测定基准明矾中铝的质量分数,得到下列9个分析结果:10.74%,10.77%,10.77%,10.77%,10.81%,10.82%,10.73%,10.86%,10.81%。已知明矾中铝含量的标准值(以理论值代)为10.77%。试问采用该新方法后,是否引起系统误差(置信度95%)? 解 n=9, f=9-1=8 查表,P=0.95,f=8时,t0.05,8=2.31。tt表两组平均值存在显著性差异。tt表,则不存在显著性差异。第95页,共122页,2022年,5月20日,11点22分,星期四例: 用两种方法测定合金中铝的质量分数,所得结果如下: 第一法 1.26% 1.25% 1.2

39、2% 第二法 1.35% 1.31% 1.33% 1.33% 试问两种方法之间是否有显著性差异(置信度90%)?解 n1=3, x1=1.24% s1=0.021% n2=4, x2=1.33% s2=0.017% f大=2 f小=3 F表=955 F t010,5,故两种分析方法之间存在显著性差异。第96页,共122页,2022年,5月20日,11点22分,星期四F 检验法-F test-方差检验(精密度显著性检验) 比较两组数据的方差s2,以确定它们的精密度是否有显著性差异的方法。统计量F定义为两组数据的方差的比值,分子为大的方差,分母为小的方差。 两组数据的精密度相差不大,则F值趋近于1

40、;若两者之间存在显著性差异,F值就较大。 在一定的P(置信度95%)及f时,F计算F表,存在显著性差异,否则,不存在显著性差异。第97页,共122页,2022年,5月20日,11点22分,星期四第98页,共122页,2022年,5月20日,11点22分,星期四例1: 在吸光光度分析中,用一台旧仪器测定溶液的吸光度6次,得标准偏差s1=0.055;再用一台性能稍好的新仪器测定4次,得标准偏差s2=0.022。试问新仪器的精密度是否显著地优于旧仪器的精密度?解:已知新仪器的性能较好,它的精密度不会比旧仪器的差,因此,这是属于单边检验问题。已知 n1=6, s1=0.055 n2=4, s2=0.0

41、22 查表,f大=6-1=5,f小=4-1=3,F表=9.01,FF表,故认为两种方法的精密度之间存在显著性差异。作出此种判断的置信度为90%。第100页,共122页,2022年,5月20日,11点22分,星期四显著性检验注意事项1单侧和双侧检验 1)单侧检验 检验某结果的精密度是否大于或小于 某值 F检验常用 2)双侧检验 检验两结果是否存在显著性差异 t 检验常用2置信水平的选择 置信水平过高以假为真 置信水平过低以真为假第101页,共122页,2022年,5月20日,11点22分,星期四3.5可疑值取舍(过失误差的判断,确定某个数据是否可用) 在实验中,当对同一试样进行多次平行测定时,常

42、常发现某一组测量值中,往往有个别数据与其他数据相差较大,这一数据称为可疑值-cutlier(也称离群值或极端值)。 法 (1)求 ; ; _ _(3)计算:|x 可疑-x 好|4d则舍去,否则保留; _ _(4)若可疑值可保留,则重算 x 和 d。第102页,共122页,2022年,5月20日,11点22分,星期四格鲁布斯(Grubbs)检验法(4)由测定次数和要求的置信度,查表得G 表;(5)比较; 若G计算 G 表,弃去可疑值,反之保留。 由于格鲁布斯(Grubbs)检验法引入了标准偏差,故准确性比较高。基本步骤:(1)排序:1,2,3,4;(2)求 和标准偏差s;(3)计算G值;第103

43、页,共122页,2022年,5月20日,11点22分,星期四(5) 根据测定次数和要求的置信度,(如90%)查表: 不同置信度下,舍弃可疑数据的Q值表 测定次数 Q90 Q95 Q99 3 0.94 0.98 0.99 4 0.76 0.85 0.93 8 0.47 0.54 0.63 (6)将Q与QX (如 Q90 )相比, 若Q QX 舍弃该数据, (过失误差造成) 若Q r0, 有相关性第112页,共122页,2022年,5月20日,11点22分,星期四例: 用吸光光度法测定合金钢中Mn的含量,吸光度与Mn的含量间有下列关系:Mn的质量g 0 0.02 0.04 0.06 0.08 0.10 10.12 未知样吸光度A 0.032 0.135 0.187 0.268 0.359 0.435 0.511 0.242 试列出标准曲线的回归方程并计算未知试样中Mn的含量。解 此组数据中,组分浓度为零时,吸光度不为零,这可能是在试剂中含有少量Mn,或者含有其它在该测量波长下有吸光的物质。 设Mn含量值为x,吸光度值为y,计算回归系数a,b值。 a=0.038 b=3.95 标准曲线的回归方程为 y=0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论