湖南省醴陵市第三中学2023学年数学九年级第一学期期末统考试题含解析_第1页
湖南省醴陵市第三中学2023学年数学九年级第一学期期末统考试题含解析_第2页
湖南省醴陵市第三中学2023学年数学九年级第一学期期末统考试题含解析_第3页
湖南省醴陵市第三中学2023学年数学九年级第一学期期末统考试题含解析_第4页
湖南省醴陵市第三中学2023学年数学九年级第一学期期末统考试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图平行四边变形ABCD中,E是BC上一点,BEEC=23,AE交BD于F,则SBFESFDA等于( )A25B49C425D232已知关于x的一元二次方程有两个相等的实根,则k的值为( )ABC2或3D或3如图,关于抛物线,下列说法错误的是 ( )A顶

2、点坐标为(1,)B对称轴是直线x=lC开口方向向上D当x1时,y随x的增大而减小4九章算术是一本中国乃至东方世界最伟大的一本综合性数学著作,标志着中国古代数学形成了完整的体系.“圆材埋壁”是九章算术中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出了圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径长为( )A26寸B25寸C13寸D寸5如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论:;当时,随的增大而增大;一元二次方程的两根分别为,;若,为方程的两个根,则且,其中正确的结论有()A个B个C

3、个D个6顺次连结菱形各边中点所得到四边形一定是( )A平行四边形B正方形C矩形D菱形7已知,且是锐角,则的度数是( )A30B45C60D不确定8如果双曲线y经过点(3、4),则它也经过点()A(4、3)B(3、4)C(3、4)D(2、6)9某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()ABCD10如图,PA,PB是O的切线,A,B为切点,AC是O的直径,BAC=28,则P的度数是( )A50B58C56D55二、填空题(每小题3分,共24分)11已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积是_cm2.12如图,已知AB是

4、半圆O的直径,BAC=20,D是弧AC上任意一点,则D的度数是_13若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_14如图,在平面直角坐标系中,RtABO的顶点O与原点重合,顶点B在x轴上,ABO=90,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C若S四边形ABCD=10,则k的值为 15如图,在中,已知依次连接的三边中点, 得,再依次连接的三边中点得,则的周长为_16如图,是的切线,为切点,连接若,则=_17如图,从一块直径为的圆形纸片上剪出一个圆心角为的扇形,使点在圆周上将剪下的扇形作为一个圆锥的侧面,则这个圆

5、锥的底面圆的半径是_18如图,中,边上的高长为作的中位线,交于点;作的中位线,交于点;顺次这样做下去,得到点,则_三、解答题(共66分)19(10分)A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由接球者将球随机地传给其余两人中的某人。请画树状图,求两次传球后,球在A手中的概率20(6分)在平面直角坐标系中,函数图象上点的横坐标与其纵坐标的和称为点的“坐标和”,而图象上所有点的“坐标和”中的最小值称为图象的“智慧数”如图:抛物线上有一点,则点的“坐标和”为6,当时,该抛物线的“智慧数”为1(1)点在函数的图象上,点的“坐标和”是

6、 ;(2)求直线的“智慧数”;(3)若抛物线的顶点横、纵坐标的和是2,求该抛物线的“智慧数”;(4)设抛物线顶点的横坐标为,且该抛物线的顶点在一次函数的图象上;当时,抛物线的“智慧数”是2,求该抛物线的解析式21(6分)如图,在平面直角坐标系中,抛物线交轴、两点(在的左侧),且,与轴交于,抛物线的顶点坐标为.(1)求、两点的坐标;(2)求抛物线的解析式;(3)过点作直线轴,交轴于点,点是抛物线上、两点间的一个动点(点不与、两点重合),、与直线分别交于点、,当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.22(8分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张

7、卡片上所标有的三个数值为7,1,1乙袋中的三张卡片所标的数值为2,1,2先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标(1)用适当的方法写出点A(x,y)的所有情况(2)求点A落在第三象限的概率23(8分)已知,如图,直线MN交O于A,B两点,AC是直径,AD平分CAM交O于D,过D作DEMN于E(1)求证:DE是O的切线;(2)若DE=6cm,AE=3cm,求O的半径24(8分)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形中,若,则称四边形为准平行四边形.(1)如图

8、,是上的四个点,延长到,使.求证:四边形是准平行四边形;(2)如图,准平行四边形内接于,若的半径为,求的长;(3)如图,在中,若四边形是准平行四边形,且,请直接写出长的最大值.25(10分)已知关于的方程.(1)求证:无论为何值,该方程都有两个不相等的实数根;(2)若该方程的一个根为-1,则另一个根为 .26(10分)如图,O过ABCD的三顶点A、D、C,边AB与O相切于点A,边BC与O相交于点H,射线AD交边CD于点E,交O于点F,点P在射线AO上,且PCD=2DAF(1)求证:ABH是等腰三角形;(2)求证:直线PC是O的切线;(3)若AB=2,AD=,求O的半径参考答案一、选择题(每小题

9、3分,共30分)1、C【分析】由四边形ABCD是平行四边形,可得ADBE,由平行得相似,即BEFDAF,再利用相似比解答本题【详解】,四边形是平行四边形, , ,故选:C【点睛】本题考查了相似三角形的判定与性质正确运用相似三角形的相似比是解题的关键2、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论【详解】方程有两个相等的实根,=k2-423=k2-24=0,解得:k=故选A【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键3、D【分析】根据抛物线的解析式得出顶点坐标是(1,-2),对称轴是直线x=1,根据a=10

10、,得出开口向上,当x1时,y随x的增大而增大,根据结论即可判断选项【详解】解:抛物线y=(x-1)2-2,A、因为顶点坐标是(1,-2),故说法正确;B、因为对称轴是直线x=1,故说法正确;C、因为a=10,开口向上,故说法正确;D、当x1时,y随x的增大而增大,故说法错误故选D4、A【分析】取圆心O,连接OP,过O作OHPQ于H,根据垂径定理求出PH的长,再根据勾股定理求出OP的值,即可求出直径【详解】解:取圆心O,连接OP,过O作OHPQ于H,由题意可知MH=1寸,PQ=10寸,PH=5寸,在RtOPH中,OP2=OH2+PH2,设半径为x,则x2=(x-1)2+52,解得:x=13,故圆

11、的直径为26寸,故选:A【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键5、C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断【详解】解:抛物线与轴交于点,其对称轴为直线 抛物线与轴交于点和,且由图象知:,故结论正确;抛物线与x轴交于点故结论正确;当时,y随x的增大而增大;当时,随的增大而减小结论错误;,抛物线与轴交于点和的两根是和,即为:,解得,;故结论正确;当时,故结论正确;抛物线与轴交于点和, ,为方程的两个根,为方程的两个根,为函数与直线的两个交点的横坐标结合图象得:且故结论成立;故选C【点睛】本题主要考查二次函数的性质

12、,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识.6、C【分析】根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形【详解】如图,四边形ABCD是菱形,且E.F.G、H分别是AB、BC、CD、AD的中点,则EHFGBD,EF=FG=BD;EFHGAC,EF=HG=AC,ACBD.故四边形EFGH是平行四边形,又ACBD,EHEF,HEF=90,边形EFGH是矩形.故选:C.【点睛】本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握

13、平行四边形的判定和三角形中位线定理.7、C【分析】根据sin60解答即可【详解】解:为锐角,sin,sin60,60故选:C【点睛】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键8、B【解析】将(3、4)代入即可求得k,由此得到答案.【详解】解:双曲线y经过点(3、4),k3(4)12(3)4,故选:B【点睛】此题考查反比例函数的性质,比例系数k的值等于图像上点的横纵坐标的乘积.9、D【分析】随机事件A的概率事件A可能出现的结果数所有可能出现的结果数【详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率,故选D【点睛】本题考查了概率,熟

14、练掌握概率公式是解题的关键10、C【分析】利用切线长定理可得切线的性质的PA=PB,则,再利用互余计算出,然后在根据三角形内角和计算出的度数【详解】解:PA,PB是O的切线,A,B为切点,PA=PB,在ABP中故选:C【点睛】本题主要考查了切线长定理以及切线的性质,熟练掌握切线长定理以及切线性质是解题的关键二、填空题(每小题3分,共24分)11、【解析】圆锥侧面积=426= cm2.故本题答案为:.12、110【解析】试题解析:AB是半圆O的直径 故答案为 点睛:圆内接四边形的对角互补.13、且【解析】试题解析: 一元二次方程有两个不相等的实数根,m10且=164(m1)0,解得m5且m1,m

15、的取值范围为m5且m1.故答案为:m5且m1.点睛:一元二次方程 方程有两个不相等的实数根时: 14、1【详解】OD=2AD,ABO=90,DCOB,ABDC,DCOABO,S四边形ABCD=10,SODC=8,OCCD=8,OCCD=1,k=1,故答案为115、【分析】根据三角形的中位线定理得:A2B2= A1B1、 B2C2= B1C1、C2A2= C1A1,则A2B2C2的周长等于A1B1C1的周长的一半,以此类推可求出A5B5C5的周长为A1B1C1的周长的【详解】解: A2B2= A1B1、 B2C2= B1C1、C2A2= C1A1,A5B5C5的周长为A1B1C1的周长的,A5B

16、5C5的周长为(7+4+5)=1故答案为1【点睛】本题主要考查了三角形的中位线定理,灵活运用三角形的中位线定理并归纳规律是解答本题的关键16、65【分析】根据切线长定理即可得出AB=AC,然后根据等边对等角和三角形的内角和定理即可求出结论【详解】解:是的切线,AB=ACABC=ACB=(180A)=65故答案为:65【点睛】此题考查的是切线长定理和等腰三角形的性质,掌握切线长定理和等边对等角是解决此题的关键17、【分析】连接BC,根据圆周角定理求出BC是O的直径,BC=12cm,根据勾股定理求出AB,再根据弧长公式求出半径r.【详解】连接BC,由题意知BAC=90,BC是O的直径,BC=12c

17、m,AB=AC,,(cm),设这个圆锥的底面圆的半径是rcm,r=(cm),故答案为:.【点睛】此题考查圆周角定理,弧长公式,勾股定理,连接BC得到BC是圆的直径是解题的关键.18、或【分析】根据中位线的性质,得出的关系式,代入即可【详解】根据中位线的性质故我们可得当均成立,故关系式正确故答案为:或【点睛】本题考查了归纳总结的问题,掌握中位线的性质得出的关系式是解题的关键三、解答题(共66分)19、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在A手中的情况,再利用概率公式即可求得答案【详解】解:列树状图一共有4种结果,两次传球后,球在A手中的有2种情况,P

18、( 两次传球后,球在A手中的 ).【点睛】此题考查的是用列表法或树状图法求概率注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比20、(1)4;(2)直线“智慧数”等于;(3)抛物线的“智慧数”是;(4)抛物线的解析式为或【分析】(1)先求出点N的坐标,然后根据“坐标和”的定义计算即可;(2)求出,然后根据一次函数的增减性和“智慧数”的定义计算即可;(3)先求出抛物线的顶点坐标,即可列出关于b和c的等式,然后求出,然后利用二次函数求出yx的最小值即可得出结论;(4)根据题意可设二次函数为

19、,坐标和为,即可求出与x的二次函数关系式,求出与x的二次函数图象的对称轴,先根据已知条件求出m的取值范围,然后根据与对称轴的相对位置分类讨论,分别求出的最小值列出方程即可求出结论【详解】解:(1)将y=2代入到解得x=2点N的坐标为(2,2)点的“坐标和”是22=4故答案为:4;(2),当时,最小,即直线,“智慧数”等于(3)抛物线的顶点坐标为,即,的最小值是抛物线的“智慧数”是;(4)二次函数的图象的顶点在直线上,设二次函数为,坐标和为对称轴当时,即时,“坐标和”随的增大而增大把代入,得,解得 (舍去),当时,当,即时,即,解得,当时,当时,所以此情况不存在综上,抛物线的解析式为或【点睛】此

20、题考查的新定义类问题、二次函数、一次函数和反比例函数的综合题型,掌握新定义、利用二次函数和一次函数求最值是解决此题的关键21、(1)点坐标,点坐标;(2);(3)是定值,定值为8【分析】(1)由OA、OB的长可得A、B两点坐标;(2)结合题意可设抛物线的解析式为,将点C坐标代入求解即可;(3)过点作轴交轴于,设,可用含t的代数式表示出,的长,利用,的性质可得EF、EG的长,相加可得结论.【详解】(1)由抛物线交轴于、两点(在的左侧),且,得点坐标,点坐标;(2)设抛物线的解析式为,把点坐标代入函数解析式,得,解得,抛物线的解析式为;(3)(或是定值),理由如下:过点作轴交轴于,如图设,则,又,

21、【点睛】本题考查了抛物线与三角形的综合,涉及的知识点主要有抛物线的解析式、相似三角形的判定和性质,灵活利用点坐标表示线段长是解题的关键.22、(1)(7,2),(1,2),(1,2),(7,1),(1,1),(1,1),(7,2),(1,2),(1,2);(2).【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率(1)直接利用表格或树状图列举即可解答(2)利用(1)中的表格,根据第三象限点(,)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可【详解】解:(1)列表如下:7112(7,2)(1,2)(1,2)1(7,1)(1,1)(1,1)2(7,2)(1,2)(1,

22、2)点A(x,y)共9种情况 (2)点A落在第三象限共有(7,2),(1,2)两种情况,点A落在第三象限的概率是23、解:(1)证明见解析;(2)O的半径是7.5cm【分析】(1)连接OD,根据平行线的判断方法与性质可得ODE=DEM=90,且D在O上,故DE是O的切线(2)由直角三角形的特殊性质,可得AD的长,又有ACDADE根据相似三角形的性质列出比例式,代入数据即可求得圆的半径【详解】(1)证明:连接ODOA=OD,OAD=ODAOAD=DAE,ODA=DAEDOMNDEMN,ODE=DEM=90即ODDED在O上,OD为O的半径,DE是O的切线(2)解:AED=90,DE=6,AE=3

23、,连接CDAC是O的直径,ADC=AED=90CAD=DAE,ACDADE则AC=15(cm)O的半径是7.5cm考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质24、(1)见解析;(2);(3)【分析】(1)先根据同弧所对的圆周角相等证明三角形ABC为等边三角形,得到ACB=60,再求出APB=60,根据AQ=AP判定APQ为等边三角形,AQP=QAP=60,故ACB=AQP,可判断QAC120,QBC120,故QACQBC,可证四边形是准平行四边形;(2)根据已知条件可判断ABCADC,则可得BAD=BCD=90,连接BD,则BD为直径为10,根据BC=CD得BCD

24、为等腰直角三角形,则BAC=BDC=45,在直角三角形BCD中利用勾股定理或三角函数求出BC的长,过B点作BEAC,分别在直角三角形ABE和BEC中,利用三角函数和勾股定理求出AE、CE的长,即可求出AC的长.(3)根据已知条件可得:ADC=ABC=60,延长BC 到E点,使BE=BA,可得三角形ABE为等边三角形,E=60,过A、E、C三点作圆o,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),连接BO交弧AE于D点,则此时BD的长度最大,根据已知条件求出BO、OD的长度,即可求解.【详解】(1)ABC=BAC=60ABC为等边三角形,ACB=60APQ=180-APC-CPB=

25、60又AP=AQAPQ为等边三角形AQP=QAP=60ACB=AQPQAC=QAP+PAB+BAC=120+PAB120故QBC=360-AQP-ACB-QAC120QACQBC四边形是准平行四边形(2)连接BD,过B点作BEAC于E点准平行四边形内接于,ABCADC,BAD=BCDBAD+BCD=180BAD=BCD=90BD为的直径的半径为5BD=10BC=CD,BCD=90CBD=BDC=45BC=BD sinBDC=10 ,BAC=BDC=45BEACBEA=BEC=90AE=ABsinBAC=6 ABE=BAE=45BE=AE= 在直角三角形BEC中,EC= AC=AE+EC= (3

26、)在中,ABC=60四边形是准平行四边形,且ADC=ABC=60延长BC 到E点,使BE=BA,可得三角形ABE为等边三角形,E=60,过A、E、C三点作圆o,因为ACE=90,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),此时,ADC=AEC=60,连接BO交弧AE于D点,则此时BD的长度最大.在等边三角形ABE中,ACB=90,BC=2AE=BE=2BC=4OE=OA=OD=2BOAEBO=BEsinE=4 BD=BO+0D=2+ 即BD长的最大值为2+【点睛】本题考查的是新概念及圆的相关知识,理解新概念的含义、掌握圆的性质是解答的关键,本题的难点在第(3)小问,考查的是与圆相关的最大值及最小值问题,把握其中的不变量作出圆是关键.25、(1)见解析;(2)1或1【分析】(1)根据因式分解法求出方程的两个解,再证明这两个解不相等即可;(2)根据(1)中的两个解分类讨论即可【详解】(1)证明:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论