数量经济学讲义数理经济学_第1页
数量经济学讲义数理经济学_第2页
数量经济学讲义数理经济学_第3页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 HYPERLINK / 中华经济学习网 HYPERLINK / 官方总站LectureNote4.3LinearTransformationsand4.27.Definition.Weshallsaythataf : L HYPERLINK / 中华经济学习网 HYPERLINK / 官方总站LectureNote4.3LinearTransformationsand4.27.Definition.Weshallsaythataf : L1 L2 is linear iff f (a,b F)(x,y L1): f(ax +by) =af(x)+bf(y)Linearfunctionsare

2、often calledlineartransformations,ratherthan4.28. 1. p Rn,f : Rn R by: 2.Aisan mn real matrix,andf : Rn Rm by: 13.ConsiderthespaceCdefinedin4.13,anddefineby (f) = f0Alinear function maps a linear combination of two points in the domain into the same linear combination of the images of those two poin

3、ts in the range space. samerelationshipholdsforanyfinitelinearcombinationofpointsinthe4.30. Suppose f : L1 L2 is a linear function, and S1,S2 subspaces of L ,respectively. Then f(S ) is a subspace L , f1(S ) is 122subspaceof L14.31.Definition.f : L is a linear function, then the is called f1kernel o

4、fthefunction,ortransformation,andisdenotedby kf 4.32.Proposition.f : L1 L2 isalinearfunction,thenfisone-to-oneiff kf =04.32b. Suppose L1 is a linear space with finite dimension. f : L1 L2 is a linear function.Then we have dim(kf )+dim(f(L1) =dim(L1) 1 HYPERLINK / 官方总站 HYPERLINK / 中华经济学习网 HYPERLINK /

5、 中华经济学习网 HYPERLINK / 官方总站4.33 Proposition. is both linear and one-to-one, and f HYPERLINK / 中华经济学习网 HYPERLINK / 官方总站4.33 Proposition. is both linear and one-to-one, and f : L1 S = f(L ).Then the g = f1 :S islinear,one-one,andonto 1114.34. Definition. A linear function, f : L1 L2, which is also one-t

6、o-one and onto said to be an isomorphism; and if such a function exists, L1 is said to be to L2 (orwesimplysaytheyare4.35. Proposition. f : L1 L2 and g : L2 L3 are both isomorphism, then compositionh =g o f ,isalsoan4.36. IsomorphismasanequivalenceAny and all implications which can be deduced from l

7、inear space assumptions regarding a particular linear space, L, apply equally in any other linear space, L, which is an element of L.4.37. Theorem. If L is any real linear space of finite dimension, n, then L isomorphicto Rn 4.4 Normed Linear4.39. Definition. We say a function : L R+ is a norm iff,

8、for all x,y L , aF : 1.(x)=0 x =0; 2.(x +y)(x)+(y); 3.(ax)=|a |(x). A linear equippedwith anormis calleda normedlinear 4.40. 2 HYPERLINK / 官方总站 HYPERLINK / 中华经济学习网 HYPERLINK / 中华经济学习网 HYPERLINK / 官方总站In Rn , the usual Euclidean normis a normby the above HYPERLINK / 中华经济学习网 HYPERLINK / 官方总站In Rn , th

9、e usual Euclidean normis a normby the above On the space m (the space of bounded real sequences), (x) = sup | xn |n(f) = max | f(x) |.Onspace Ca,b , define isanormCa,b xa,b4.41. Definition. We shall say that a function, d :LL is a metric for Liff, all x,y,z L ,wed(x,y)=0iffx=y 4.42. Theorem. If L is

10、 a normed linear space, with norm , and if we d : LL R+ by d(x,y) =(x y). then d is a metric for L. Furthermore, d thefollowingtwoadditionalconditions:forallx,y,zinLandainF,we(homogeneity):d(ax,ay)=|a|(translationinvariance):d(x+z,4.43. interiorpointofX; X is open;a point of closure of closed set. (

11、As was the case in Rn , it can be shown that X is closed iff it is equal to its closure)4.44. 1. CauchyIt is easy to show that if a sequence converges, then it is a Cauchy sequence. 3 HYPERLINK / 官方总站 HYPERLINK / 中华经济学习网 HYPERLINK / 中华经济学习网 HYPERLINK / 官方总站the other hand, in an arbitrary normed line

12、ar space, a Cauchy sequence may not be convergent.However, if it is the case that every Cauchy sequence in a linear space, L, converges to a point in L, we will say that L is complete. In particular, a normed HYPERLINK / 中华经济学习网 HYPERLINK / 官方总站the other hand, in an arbitrary normed linear space, a

13、Cauchy sequence may not be convergent.However, if it is the case that every Cauchy sequence in a linear space, L, converges to a point in L, we will say that L is complete. In particular, a normedlinearspace iscalled aBanach space.RnisExample: Linear f xR |(mN)(n m):x 0. nxn where x =(1, ,., ,0,0,.)

14、.ItisaCauchysequencebutnotn4.45. Continuousatapointx;continuousUniformlycontinuousonaset4.46. 1. Let L be the space Ca,b , and let x in a,b be fixed. (f) = max | f(x) |. xa,bthen define : L R by (f)= f(x). Then this function is uniformly on2. Let Lbe any real normed linear space, with norm |.|, let

15、Abe a non-empty of L, and define the function (x,A) =inf |x y |, for x L . Then yuniformlycontinuouson(ComparedwithThm3.20and4.47.Theorem.Suppose f :L1 L2,whereLsarenormedlinearspacewithi ThenthefollowingconditionsaremutuallyThefunctionfisForeachopensubset,U,of L , f1(U) isopenin L 21Foreachclosedsu

16、bset,C,L f1(C) isclosedin L 214 HYPERLINK / 官方总站 HYPERLINK / 中华经济学习网 HYPERLINK / 中华经济学习网 HYPERLINK / 官方总站4.5InnerProduct4.51 Definition If L is a real HYPERLINK / 中华经济学习网 HYPERLINK / 官方总站4.5InnerProduct4.51 Definition If L is a real linear space, we say that a f : LL R is inner product for Liff, wri

17、ting xy in place of f(x,y), we have for all x,y,z in L, allainxx=0,and xx=0iffxy=y3. (ax)y=a(xy),x(y+z)=xy+x4.52 Definitions A real linear space, L, equipped with an inner product, is called an inner product space. If an inner product space is also complete, it is called a Hilbert space. (In the rem

18、ainder of this section, we will always take L to be an inner productspace,butnonecessarily4.53 n1. In Rn ,thefamiliardefinition: xy x (Wecandefine | x |=(xx)1/2i 2. In l2 ,define xy xi yi 4.54. Theorem (Cauchy-Schwarz Inequality) Suppose L is an inner product Define | x |=(x x)1/2.Thenforallx,yinL,w

19、ehave |x y |x | y | 4.55.PropositionThefunction|.|definedonLby | x |=(x x)1/2 isanormfor4.56 Proposition (Bi-continuous) Suppose L is inner product space. x*,y* L,and 0, 0,suchx,y 5 HYPERLINK / 官方总站 HYPERLINK / 中华经济学习网 HYPERLINK / 中华经济学习网 HYPERLINK / 官方总站max| x x* |,| y HYPERLINK / 中华经济学习网 HYPERLINK

20、 / 官方总站max| x x* |,| y y* | |x.y x*.y* |4.57Proposition | x +y |2 +| x y|2=2 | x|2 +2 | y|4.58 Definition. In an inner product space, we say x and y are orthogonal iff xandwrite x 4.59.PropositionIfxisorthogonaltoy,then | x +y |2=| x |2 +| y|4.60. Definitions A set of vectors, X xa | xa 0,aA, in L i

21、s said to be orthogonalsystemifffor each a,bA suchthat a b,wehave xa xb 0.IfXadditionsatisfies: (aA): xa xb 1,thenXissaidtobeanorthonormal4.61PropositionAnorthogonalsystemislinearly4.62Definition IfS isa linear subspaceof L,a subset,X, of Lwhichis ansystemiscalledanorthogonalbasisforSiff4.63 Definition If S is a linear subspace of L, we define S, the ScomplementofalinearsubspaceS,xL|yS :x y 4.64Proposition. If S isa linearsubspace, is a linear subspace of Las SAnd S S =4.65 T

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论