2023学年广东梅州市丰顺县数学九年级第一学期期末综合测试模拟试题含解析_第1页
2023学年广东梅州市丰顺县数学九年级第一学期期末综合测试模拟试题含解析_第2页
2023学年广东梅州市丰顺县数学九年级第一学期期末综合测试模拟试题含解析_第3页
2023学年广东梅州市丰顺县数学九年级第一学期期末综合测试模拟试题含解析_第4页
2023学年广东梅州市丰顺县数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)11米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是( )A80米B85米C120米D125米2如图,在ABC中,点D在BC上,DEAC,DFAB,下列四个判断中不正确的是( )A四边形AEDF是平行四边形B若BAC90,则四边形AEDF是

2、矩形C若AD平分BAC,则四边形AEDF是矩形D若ADBC且ABAC,则四边形AEDF是菱形3已知二次函数yax2bxc的图象如图,则下列叙述正确的是( )Aabc0B3ac0Cb24ac0D将该函数图象向左平移2个单位后所得到抛物线的解析式为yax2c4已知点A(,),B(1,),C(2,)是函数图象上的三点,则,的大小关系是( )ABCD无法确定5在同一坐标系中,一次函数与二次函数的图象可能是( )ABCD6反比例函数的图象如图所示,以下结论: 常数m 1; 在每个象限内,y随x的增大而增大; 若A(1,h),B(2,k)在图象上,则hk; 若P(x,y)在图象上,则P(x,y)也在图象上

3、. 其中正确的是ABCD7在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )ABCD8已知一组数据共有个数,前面个数的平均数是,后面个数的平均数是,则这个数的平均数是( )ABCD9在中,则的值是( )ABCD10如图,在平面直角坐标系中,点在直线上,连接,将线段绕点顺时针旋转90,点的对应点恰好落在直线上,则的值为( )A2B1CD11如图,在O中,AB是直径,AC是弦,连接OC,若ACO=30,则BOC的度数是( )A30 B45 C55 D6012在直角梯形ABCD中,AD/BC,B=90,E为AB上一点,且ED平分ADC,EC平分BCD,则下列结论:DEEC;点E是AB的中点

4、;ADBC=BEDE;CD=AD+BC其中正确的有( )ABCD二、填空题(每题4分,共24分)13圆内接正六边形的边长为6,则该正六边形的边心距为_14已知关于x的一元二次方程x2+px-3=0的一个根为-3,则它的另一根为_.15在中,若,则是_三角形16我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:图象与坐标轴的交点为,和;图象具有对称性,对称轴是直线;当或时,函数值随值的增大而增大;当或时,函数的最小值是0;当时,函数的最大值是1其中正确结论的个数是_.17关于的一元二次方程有两个不相等的实

5、数根,则的取值范围是_18如图,直线yax+b过点A(0,2)和点B(3,0),则方程ax+b0的解是_三、解答题(共78分)19(8分)如图,在平面直角坐标系中,已知RtAOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OAOB)且OA、OB的长分别是一元二次方程x214x+480的两个根,线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线AB上一个动点,点Q是直线CD上一个动点(1)求线段AB的长度:(2)过动点P作PFOA于F,PEOB于E,点P在移动过程中,线段EF的长度也在改变,请求出线段EF的最小值:(3)在坐标平面内是否存在一点M,使以点C、P、Q、M为顶点的四边

6、形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标:若不存在,请说明理由20(8分)如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒当t为何值时,四边形OMPN为矩形当t0时,BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由21(8分)如图,一次函数y1x+2

7、的图象与反比例函数y2(k0)的图象交于A、B两点,且点A的坐标为(1,m)(1)求反比例函数的表达式及点B的坐标;(2)根据图象直接写出当y1y2时x的取值范围22(10分)某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价元(为非负整数),每周的销量为件.(1)求与的函数关系式及自变量的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?23(10分)如图,已知是的直径,点是延长线上一点过点作的切线,切点为.过点作于点,延长交于点.连结,.若,.(1)

8、求的长。(2)求证:是的切线.(3)试判断四边形的形状,并求出四边形的面积.24(10分)探究问题:方法感悟:如图,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足EAF=45,连接EF,求证DE+BF=EF感悟解题方法,并完成下列填空:将ADE绕点A顺时针旋转90得到ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE, 1=2,ABG=D=90,ABG+ABF=90+90=180,因此,点G,B,F在同一条直线上EAF=45 2+3=BAD-EAF=90-45=451=2, 1+3=45即GAF=_又AG=AE,AF=AFGAF_=EF,故DE+BF=EF方法迁移:如

9、图,将沿斜边翻折得到ADC,点E,F分别为DC,BC边上的点,且EAF=DAB试猜想DE,BF,EF之间有何数量关系,并证明你的猜想问题拓展:如图,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当B与D满足什么关系时,可使得DE+BF=EF请直接写出你的猜想(不必说明理由)25(12分)(1)x22x30(2)cos45tan45+tan302cos602sin4526我们把两条中线互相垂直的三角形称为“中垂三角形”. 如图1,图2,图3中,是的中线,垂足为点,像这样的三角形均为“中垂三角形. 设. (1)如图1,当时,则_,_;(2)如图2,当时,则_,_;归纳证

10、明(3)请观察(1)(2)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(4)如图4,在中,分别是的中点,且. 若,求的长.参考答案一、选择题(每题4分,共48分)1、D【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解:设电视塔的高度应是x,根据题意得:=,解得:x=125米故选D命题立意:考查利用所学知识解决实际问题的能力2、C【解析】A选项,在ABC中,点D在BC上,DEAC,DFAB,DEAF,DFAE,四边形AEDF是平行四边形;即A正确;B选项,四边形AEDF是平行四边形,

11、BAC=90,四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,ADBC”可证明AD平分BAC,从而可通过证EAD=CAD=EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.3、B【解析】解:A由开口向下,可得a0;又由抛物线与y轴交于负半轴,可得c0,然后由对称轴在y轴右侧,得到b与a异号,则可得b0,故得abc0,故本选项错误;B根据图知对称轴为直线x=2,即=2,得b=4a,再

12、根据图象知当x=1时,y=a+b+c=a4a+c=3a+c0,故本选项正确;C由抛物线与x轴有两个交点,可得b24ac0,故本选项错误;Dy=ax2+bx+c=, =2,原式=,向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选B4、B【分析】直接根据反比例函数的性质排除选项即可【详解】因为点A(,),B(1,),C(2,)是函数图象上的三点,反比例函数的图像在二、四象限,所以在每一象限内y随x的的增大而增大,即;故选B【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键5、D【解析】试题分析:A由直线与y轴的交点在y轴的负半轴上可知,0,错误;B由抛物线与y轴

13、的交点在y轴的正半轴上可知,m0,由直线可知,m0,错误;C由抛物线y轴的交点在y轴的负半轴上可知,m0,由直线可知,m0,错误;D由抛物线y轴的交点在y轴的负半轴上可知,m0,由直线可知,m0,正确,故选D考点:1二次函数的图象;2一次函数的图象6、C【解析】分析:因为函数图象在一、三象限,故有m0,故错误;在每个象限内,y随x的增大而减小,故错;对于,将A、B坐标代入,得:hm,因为m0,所以,hk,故正确;函数图象关于原点对称,故正确因此,正确的是故选C7、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A此图案既不是轴对称图形,也不是中心对称图形;B此图案既不是轴对称图形,

14、也不是中心对称图形;C此图案既是轴对称图形,又是中心对称图形;D此图案仅是轴对称图形;故选:C【点睛】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合8、C【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数【详解】解:由题意得:(1014+156)20=11.5,故选:C【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可.9、D【分析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解【详解】C=90,BC=

15、1,AB=4,故选:D【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比10、D【分析】根据已知条件可求出m的值,再根据“段绕点顺时针旋转90”求出点B坐标,代入即可求出b的值【详解】解:点在直线上,又点B为点A绕原点顺时针旋转90所得,点B坐标为,又点B在直线,代入得故答案为D【点睛】本题考查了一次函数与旋转的相关知识,解题的关键是能够根据已知条件得出点B的坐标11、D【解析】试题分析:OA=OC,A=ACO=30,AB是O的直径,BOC=2A=230=60故选D考点:圆周角定理12、C【解析】如图(见解析),过点E作,根据平行线的

16、性质、角平分线的性质、相似三角形的判定定理与性质逐个判断即可.【详解】如图,过点E作,即ED平分,EC平分,即,故正确又ED平分,EC平分,点E是AB的中点,故正确在和中,同理可证:,故正确又,即在中,故错误综上,正确的有故选:C.【点睛】本题考查了平行线的性质、角平分线的性质、相似三角形的判定定理与性质,通过作辅助线,构造垂线和两组全等的三角形是解题关键.二、填空题(每题4分,共24分)13、3【分析】根据题意画出图形,利用等边三角形的性质及锐角三角函数的定义直接计算即可【详解】如图所示,连接OB、OC,过O作OGBC于G此多边形是正六边形,OBC是等边三角形,OBG=60,边心距OG=OB

17、sinOBG=6(cm)故答案为:【点睛】本题考查了正多边形与圆、锐角三角函数的定义及特殊角的三角函数值,熟知正六边形的性质是解答本题的关键14、1【分析】根据根与系数的关系得出3x6,求出即可【详解】设方程的另一个根为x,则根据根与系数的关系得:3x3,解得:x1,故答案为:1【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键15、等腰【分析】根据绝对值和平方的非负性求出sinA和tanB的值,再根据锐角三角函数的特殊值求出A和B的角度,即可得出答案.【详解】,A=30,B=30ABC是等腰三角形故答案为等腰.【点睛】本题考查的是特殊三角函数值,比较

18、简单,需要牢记特殊三角函数值.16、1【解析】由,和坐标都满足函数,是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此也是正确的;从图象上看,当或,函数值要大于当时的,因此时不正确的;逐个判断之后,可得出答案【详解】解:,和坐标都满足函数,是正确的;从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此也是正确的;函数图象的最低点就是与轴的两

19、个交点,根据,求出相应的的值为或,因此也是正确的;从图象上看,当或,函数值要大于当时的,因此是不正确的;故答案是:1【点睛】理解“鹊桥”函数的意义,掌握“鹊桥”函数与与二次函数之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数与轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.17、【分析】根据根的判别式即可求出答案;【详解】解:由题意可知: 解得:故答案为:【点睛】本题考查一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式并应用18、x1【分析】所求方程ax+b0的解,即为函数yax+b图像与x轴交点横坐标,根据已知条件中点B即可确定【详解】解:方程a

20、x+b0的解,即为函数yax+b图象与x轴交点的横坐标,直线yax+b过B(1,0),方程ax+b0的解是x1,故答案为:x1【点睛】本题主要考查了一次函数与一元一次方程的关系,掌握一次函数与一元一次方程之间的关系是解题的关键.三、解答题(共78分)19、(1)1;(2);(3)存在,所求点M的坐标为M1(4,11),M2(4,5),M3(2,3),M4(1,3)【分析】(1)利用因式分解法解方程x214x+480,求出x的值,可得到A、B两点的坐标,在RtAOB中利用勾股定理求出AB即可(2)证明四边形PEOF是矩形,推出EFOP,根据垂线段最短解决问题即可(3)分两种情况进行讨论:当点P与

21、点B重合时,先求出BM的解析式为yx+8,设M(x,x+8),再根据BM5列出方程(x+88)2+x252,解方程即可求出M的坐标;当点P与点A重合时,先求出AM的解析式为yx,设M(x,x),再根据AM5列出方程(x)2+(x6)252,解方程即可求出M的坐标【详解】解:(1)解方程x214x+480,得x16,x28,OAOB,A(6,0),B(0,8);在RtAOB中,AOB90,OA6,OB8,AB1(2)如图,连接OPPEOB,PFOA,PEOEOFPFO90,四边形PEOF是矩形,EFOP,根据垂线段最短可知当OPAB时,OP的值最小,此时OP,EF的最小值为(3)在坐标平面内存在

22、点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长ACBCAB5,以点C、P、Q、M为顶点的正方形的边长为5,且点P与点B或点A重合分两种情况:当点P与点B重合时,易求BM的解析式为yx+8,设M(x,x+8),B(0,8),BM5,(x+88)2+x252,化简整理,得x216,解得x4,M1(4,11),M2(4,5);当点P与点A重合时,易求AM的解析式为yx,设M(x,x),A(6,0),AM5,(x)2+(x6)252,化简整理,得x212x+200,解得x12,x21,M3(2,3),M4(1,3);综上所述,所求点M的坐标为M1(4,11),M2(4,5)

23、,M3(2,3),M4(1,3)【点睛】本题是一次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数的解析式,一元二次方程的解法,正方形的性质,综合性较强,难度适中运用数形结合、分类讨论及方程思想是解题的关键20、(1),B点坐标为(3,0);(2);【分析】(1)由对称轴公式可求得b,由A点坐标可求得c,则可求得抛物线解析式;再令y=0可求得B点坐标;(2)用t可表示出ON和OM,则可表示出P点坐标,即可表示出PM的长,由矩形的性质可得ON=PM,可得到关于t的方程,可求得t的值;由题意可知OB=OA,故当BOQ为等腰三角形时,只能有OB=BQ或OQ=BQ,用t可表示出Q点的坐标,

24、则可表示出OQ和BQ的长,分别得到关于t的方程,可求得t的值【详解】(1)抛物线对称轴是直线x=1,=1,解得b=2,抛物线过A(0,3),c=3,抛物线解析式为,令y=0可得,解得x=1或x=3,B点坐标为(3,0);(2)由题意可知ON=3t,OM=2t,P在抛物线上,P(2t,),四边形OMPN为矩形,ON=PM,3t=,解得t=1或t=(舍去),当t的值为1时,四边形OMPN为矩形;A(0,3),B(3,0),OA=OB=3,且可求得直线AB解析式为y=x+3,当t0时,OQOB,当BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,Q(2t,2t+3),OQ

25、=,BQ=|2t3|,又由题意可知0t1,当OB=QB时,则有|2t3|=3,解得t=(舍去)或t=;当OQ=BQ时,则有=|2t3|,解得t=;综上可知当t的值为或时,BOQ为等腰三角形21、(1)y,B(3,1);(2)3x0或x1【分析】(1)把A点坐标代入一次函数解析式可求得m的值,可得到A点坐标,再把A点坐标代入反比例函数解析式可求得k的值,解析式联立,解方程即可求得B的坐标;(2)根据图象观察直线在双曲线上方对应的x的范围即可求得【详解】解:(1)一次函数图象过A点,m1+2,解得m3,A点坐标为(1,3),又反比例函数图象过A点,k133反比例函数y,解方程组得:或,B(3,1)

26、;(2)当y1y2时x的取值范围是3x0或x1【点睛】此题主要考查反比例函数与一次函数综合,解题的关键是熟知待定系数法的应用.22、(1),;(2)每件的售价是17元或者18元.【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y与x的函数关系式,然后根据x的实际意义和售价每件不能高于20元即可求出x的取值范围;(2)根据总利润=单件利润件数,列方程,并解方程即可【详解】(1)解:与的函数关系式为售价每件不能高于20元自变量的取值范围是;(2)解:设每件涨价元(为非负整数),则每周的销量为件,根据题意列方程,解得:,所以,每件的售价是17元或者18元答:如果经营该商品每周的

27、利润是560元,求每件商品的售价是17元或者18元【点睛】此题考查的是一次函数的应用和一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键23、(1)BD=2;(2)见解析;(3)四边形ABCD是菱形,理由见解析. 菱形ABCD得面积为6.【分析】(1)根据题意连结BD,利用切线定理以及勾股定理进行分析求值;(2)根据题意连结OB,利用垂直平分线性质以及切线定理进行分析求值;(3)由题意可知四边形ABCD是菱形,结合勾股定理利用菱形的判定方法进行求证.【详解】解:(1)连结BDDE=CE DCE=EDC O与CD相切于点D,ODDC,ODC=90ODE+CDE=90 DOC+DCO=9

28、0,DCE=EDCODE=DOEDE=OE 在O中,OE=ODOE=OD=DEDOE=60 在O中,AEDBBD=2DF在RtCOE中,ODF-90-DOE=90-60=30OD=2OFEF=1 ,设半径为R, OF=OE-FE=R-1R=2(R-1),解得R=2 BD=2DF=2(2)连结OB 在O中,AEDBBF=DFAC是DB的垂直平分线OD=0B,CD=CBODB=OBD,CDB=CBDODB+CDB=OBD+CBD即ODC=OBC由(1)得ODC=90OBC=90即OBBC又OB是O的半径CB是O的切线(3)四边形ABCD是菱形,理由如下 由(1)得在O中,DOE=60,ODC=90

29、DAO=DOE=30 由(1)得ODC=90OCD=90-DOC=90-60=30DAO=OCDDA=CD 由(2)得AD=AB,CD=BCAD=DC=BC=AB四边形ABCD是菱形在RtAFD中,DF=,DAC=30AD=2DF=2四边形ABCD是菱形AC=2AF=6,BD=2DF=2菱形ABCD得面积为:ACDB=62=6.【点睛】本题考查切线的性质、等边三角形的判定和性质、菱形的判定和性质以及解直角三角形,熟练掌握并综合利用其进行分析是解题关键24、EAF、EAF、GF;DE+BF=EF;当B与D互补时,可使得DE+BF=EF【分析】(1)根据正方形性质填空;(2)假设BAD的度数为,将ADE绕点A顺时针旋转得到ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE, 1=2,ABG=D=90,结合正方形性质可得DE+BF=EF. 根据题意可得,当B与D互补时,可使得DE+BF=EF【详解】EAF、EAF、GFDE+BF=EF,理由如下:假设BAD的度数为,将ADE绕点A顺时针旋转得到ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE, 1=2,ABG=D=90,ABG+ABF=90+90=180,因此,点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论