版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1二次函数yx2+(t1)x+2t1的对称轴是y轴,则t的值为
2、()A0BC1D22一条排水管的截面如图所示,已知排水管的半径,水面宽,则截面圆心到水面的距离是( )A3B4CD83如图,在O中,已知OAB=22.5,则C的度数为()A135B122.5C115.5D112.54不透明袋子中有个红球和个蓝球,这些球除颜色外无其他差别,从袋子中随机取出个球是红球的概率是()ABCD5如图,A是O的圆周角,A40,则OBC()A30B40C50D606若点,在反比例函数的图像上,则的大小关系是( )ABCD7若x=5是方程的一个根,则m的值是( )A-5B5C10D-108如图,等边的边长为 是边上的中线,点是 边上的中点. 如果点是 上的动点,那么的最 小值
3、为( )ABCD9把一副三角板如图(1)放置,其中ACBDEC90,A41,D30,斜边AB4,CD1把三角板DCE绕着点C顺时针旋转11得到D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )ABCD410 “三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,点,可在槽中滑动,若,则的度数是( )A60B65C75D80二、填空题(每小题3分,共24分)11将一元二次方程变形为的形式为_12在中,则的值是_13已知CD是RtABC的斜边AB上的中线,若A35
4、,则BCD_14大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势,应选用_统计图来描述数据.15在阳光下,高6m的旗杆在水平地面上的影子长为4m,此时测得附近一个建筑物的影子长为16m,则该建筑物的高度是_m16如图,ABC中,已知C=90,B=55,点D在边BC上,BD=2CD把ABC绕着点D逆时针旋转m(0m180)度后,如果点B恰好落在初始RtABC的边上,那么m=_17把多项式分解因式的结果是 18如图所示,某河堤的横断面是梯形,迎水坡长26米,且斜坡的坡度为,则河堤的高为 米三、解答题(共66分)19(10分)计算:20(6分)如图,在ABC中,ACB90
5、,D为AC的中点,DEAB于点E,AC8,AB1求AE的长21(6分)如图,AB是O 的直径,CD是O的一条弦,且CDAB于点E(1)求证:BCO=D;(2)若CD=,AE=2,求O的半径22(8分)计算:(1)tan60-+(3.14-)0; (2)解方程:23(8分)某班“数学兴趣小组”对函数y=x22|x|的图象和性质进行了探究,探究过程如下,请补充完整(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x3 210123y3m10103其中,m=(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分(3)观察函数图象,写出
6、两条函数的性质(4)进一步探究函数图象发现:函数图象与x轴有个交点,所以对应的方程x22|x|=0有 个实数根;方程x22|x|=2有个实数根.关于x的方程x22|x|=a有4个实数根时,a的取值范围是 24(8分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点M的坐标(x,y)(1)写出点M所有可能的坐标;(2)求点M在直线上的概率25(10分)尺规作图:已知ABC,如图(1)求作:ABC的外接圆O;
7、(2)若AC4,B30,则ABC的外接圆O的半径为 26(10分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀(1)从中任意摸出1个球,恰好摸到红球的概率是 ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率参考答案一、选择题(每小题3分,共30分)1、C【解析】根据二次函数的对称轴方程计算【详解】解:二次函数yx2+(t1)x+2t1的对称轴是y轴,0,解得,t1,故选:C【点睛】本题考查二次函数对称轴性质,熟练掌握对称轴的公式是解题的关键.2、D【分析】根据垂径定理,
8、OCAB,故OC平分AB,由AB=12,得出BC=6,再结合已知条件和勾股定理,求出OC即可【详解】解:OCAB,AB=12BC=6OC=故选D【点睛】本题主要考查了垂径定理以及勾股定理,能够熟悉定理以及准确的运算是解决本题的关键3、D【解析】分析:OA=OB,OAB=OBC=22.5AOB=18022.522.5=135如图,在O取点D,使点D与点O在AB的同侧则C与D是圆内接四边形的对角,C=180D =112.5故选D4、A【解析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有个球,红球有个,所以,取出红球的概率为,故选A.【点睛】本题考查了简单的概率计算,正确
9、把握概率的计算公式是解题的关键.5、C【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半求得BOC,再根据三角形的内角和定理以及等腰三角形的两个底角相等进行计算【详解】解:根据圆周角定理,得BOC2A80OBOCOBCOCB50,故选:C【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,掌握圆周角定理是解题的关键6、C【解析】根据点A、B、C分别在反比例函数上,可解得、的值,然后通过比较大小即可解答.【详解】解:将A、B、C的横坐标代入反比函数上,得:y16,y23,y32,所以,;故选C.【点睛】本题考查了反比例函数的计算,熟练掌握是解题的关键.7、D【分析】先把x=5代
10、入方程得到关于m的方程,然后解此方程即可【详解】解:把x=5代入方程得到25-35+m=0,解得m=-1故选:D【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解8、D【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】连接BE,与AD交于点GABC是等边三角形,AD是BC边上的中线,ADBC,AD是BC的垂直平分线,点C关于AD的对称点为点B,BE就是EP+CP的最小值G点就是所求点,即点G与点P重合,等边ABC的边长为8,E为AC的中点,CE=4,BEAC,在直角BEC中,BE=,EP+CP的最小值为
11、,故选D.【点睛】此题考查轴对称-最短路线问题,等边三角形的对称性、三线合一的性质以及勾股定理的运用,熟练掌握,即可解题.9、A【解析】试题分析:由题意易知:CAB=41,ACD=30若旋转角度为11,则ACO=30+11=41AOC=180-ACO-CAO=90在等腰RtABC中,AB=4,则AO=OC=2在RtAOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=故选A.考点: 1.旋转;2.勾股定理.10、D【分析】根据OC=CD=DE,可得O=ODC,DCE=DEC,根据三角形的外角性质可知DCE=O+ODC=2ODC据三角形的外角性质即可求出ODC数,进而求出CDE的度数【详解
12、】,设,即,解得:,.故答案为D.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键二、填空题(每小题3分,共24分)11、【分析】根据完全平方公式配方即可【详解】解:故答案为:【点睛】此题考查的是配方法,掌握完全平方公式是解决此题的关键12、【分析】直接利用正弦的定义求解即可【详解】解:如下图,在中,故答案为:【点睛】本题考查的知识点是正弦的定义,熟记定义内容是解此题的关键13、55【分析】这道题可以根据CD为斜边AB的中线得出CD=AD,由A=35得出A=ACD=35,则BCD=90- 35=55.【详解】如图,CD为斜边AB的中线CD=ADA=35
13、A=ACD=35ACD+BCD=90则BCD=90- 35=55故填:55.【点睛】此题主要考查三角形内角度求解,解题的关键是熟知直角三角形的性质.14、折线【解析】试题解析:根据题意,得要求清楚地表示销售总量的总趋势是上升还是下降,结合统计图各自的特点,应选用折线统计图,15、1【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】解:设建筑物的高为h米,则,解得h1故答案为:1【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键16、70或120【分析】当点B落在AB边上时,根据DB=DB1,即可解决问题,当点B落在AC上
14、时,在RTDCB2中,根据C=90,DB2=DB=2CD可以判定CB2D=30,由此即可解决问题【详解】当点B落在AB边上时,当点B落在AC上时,在中,C=90, ,故答案为70或120.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.17、m(4m+n)(4mn)【解析】试题分析:原式=m(4m+n)(4mn)故答案为m(4m+n)(4mn)考点:提公因式法与公式法的综合运用18、24【解析】试题分析:因为斜坡的坡度为,所以BE:AE=,设BE=12x,则AE=5x;在RtABE中,由勾股定理知:即:解得:x=2或-2(负值舍去);所以BE=12x=24(米)考点
15、:解直角三角形的应用三、解答题(共66分)19、-1【分析】将, 代入计算即可得到答案.【详解】=-4+1+,=-3+2,=-1.【点睛】此题考查实数的混合计算,熟记特殊角度的三角函数值,掌握正确的计算顺序是解题的关键.20、【分析】求出AD的长,根据ADEABC,可得,则可求出AE的长【详解】解:AC8,D为AC的中点,AD4,DEAB,AED90,DAEBAC,ADEABC,AE【点睛】本题考查的知识点是相似三角形判定及其性质,熟记定理和性质是解题的关键.21、(1)见解析;(2)1【解析】试题分析:根据OC=OB得到BCO=B,根据弧相等得到B=D,从而得到答案;根据题意得出CE的长度,
16、设半径为r,则OC=r,OE=r2,根据RtOCE的勾股定理得出半径试题解析:(1)证明: OC=OB, BCO=B , B=D, BCO=D(2)解:AB是O的直径,CDAB, CE=在RtOCE中,OC2=CE2+OE2, 设O的半径为r,则OC=r,OE=OAAE=r2,解得:r=1, O的半径为1考点:圆的基本性质22、(1)2;(2) x1=2,x2=1【分析】(1)根据特殊角的三角函数值,绝对值的意义和零指数幂的运算法则计算即可;(2)利用因式分解法解方程即可【详解】(1)解:原式+1+12; (2),或,x1=2,x2=1【点睛】本题主要考查实数的混合运算及解一元二次方程,掌握特
17、殊角的三角函数值,绝对值的意义,零指数幂的运算法则和因式分解法是解题的关键23、(1)1;(2)作图见解析;(3)函数y=x22|x|的图象关于y轴对称;当x1时,y随x的增大而增大;(答案不唯一)(4) 3,3,2,1a1【解析】(1)把x=-2代入y=x2-2|x|得y=1,即m=1,故答案为:1;(2)如图所示;(3)由函数图象知:函数y=x2-2|x|的图象关于y轴对称;当x1时,y随x的增大而增大;(4)由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2-2|x|=1有3个实数根;如图,y=x2-2|x|的图象与直线y=2有两个交点,x2-2|x|=2有2个实数根;由函数图象
18、知:关于x的方程x2-2|x|=a有4个实数根,a的取值范围是-1a1,故答案为:3,3,2,-1a124、点M坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)(2). 【解析】试题分析:(1)通过列表展示所有9种等可能的结果数;(2)找出满足点落在函数的图象上的结果数,然后根据概率公式求解试题解析:(1)列表如下:yx1230(0,1)(0,2)(0,3)1(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)从表格中可知,点M坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)共有9种等可能的结果数;(2)当x=0时,y=-0+3=3,当x=1时,y=-1+3=2,当x=2时,y=-2+3=1, 由(1)可得点M坐标总共有九种可能情况,点M落在直线上(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园肺炎预防课程设计
- 小童自行车课程设计
- 幼儿家长课程设计
- 弹丸设计理论 课程设计
- 幼儿园寻找蝴蝶课程设计
- 戏剧社 课程设计与定位
- 《巴氯芬及γ-氨基丁酸与蛋白质的相互作用研究》
- 《MgIn2S4及其复合材料的制备与光催化性能的研究》
- 基本计算机课程设计
- 《一种镍基单晶高温合金TLP接头的微观组织和性能研究》
- 汽车维修投标书服务方案(2篇)
- GJB9001C-2017标准介绍及不符合项案例分析试题与答案
- 顺丰快递合作协议书
- 汽车故障诊断技术:汽车底盘故障诊断与排除
- 中医学概论 知到智慧树网课答案
- (高清版)JTGT 3364-02-2019 公路钢桥面铺装设计与施工技术规范
- 光谱分析培训总结
- 传染病护理学案例分析报告总结
- JT-T-215-1995水下胶粘剂技术要求和试验方法
- MOOC 医学基础-武汉理工大学 中国大学慕课答案
- 2024年中考作文十二大高频热点主题10-责任担当(素材)
评论
0/150
提交评论