自控实验报告_第1页
自控实验报告_第2页
自控实验报告_第3页
自控实验报告_第4页
自控实验报告_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、自 动 控 制 实 验 报学院:专业:10电气(2)班指 导老师:姓名:学号:实验一 MATLAB及仿真实验(控制系统的时域分析)学习利用MATLA进行以下 实验,要求熟练掌握实验内容中所用到的指令,并按内容要求完成实验。一、实验目的学习利用MATLABS行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统 的动 态特性;、预习要点1、系统的典型响应有哪些?惯性响应,积分响应,微分响应,一阶微分响应,二阶微分响应,振荡响应,比例响应如何判断系统稳定性?从闭环系统的零、极点来看,只要闭环系统的特征方程的根都分布在s平面的左半平面,系统就是稳定的。a、 劳斯判据一一判定多项式方程在S平面的右

2、半平面是否存在根的充要判据。一一特征方程具有正实部根的数目与劳斯表第一列中符号变化的次数相同。b、奈奎斯特判据一一利用开环频率的几何特性来判断闭环系统的稳定性和稳定性程度,更便于分析开环参数和结构变化对闭环系统瞬态性能影响。一一利用幅角原理一一Z、P分别为右半平面闭环、开环极点,要想闭环系统Z=p+N=Q其中N为开环频率特性曲 稳定,贝U线GH(jw)顺时针绕(-1 , j0)的圈数。c、波特图幅值裕度系统开环频率-180时(穿越频率),其幅值倒数K倍,系统临界稳定。特性相位为K意乂为闭环稳定系统,如果系统的开环传递系数再增大 相位裕度一一系统开环频率特性的幅值为1时(截止频率),其相位与18

3、0之和。意义为:闭环稳定系统,如果系统开环频率特性再滞后r,系统进入临界稳定。低频段一一稳态误差有关。L(w)在低频段常见频率为-20、-40,也就是一阶或二阶无差(v=1/v=2)中频段一一截止频率附近的频段,与系统的瞬态性能有关。为了具有合适的相位裕度 (3060), L (w)在中频段穿过0分贝线的斜率应为-20,并且具有足够的宽度。高频段一一抗高频干扰能力。高频段闭环频率特性近似于开环频率特性,高频段幅值分贝越小,则抑制高频信号衰落的作用越大,抗高频干扰越强。L (w)在高频段应具有较大的负斜率。d、根轨迹一一系统开环传递函数的某一参数变化造成闭环特征根在根平面上变化的轨 迹。 -增加

4、开环零点,根轨迹左移,提高相对稳定性,改善动态性能。零点越靠近虚轴影响越 大。 增加开环极点,根轨迹右移,不利于系统稳定和动态性能。3系统的动态性能指标有哪些?峰值时间tp上升时间匚调整时间ts超调量二%三、实验方法四种典型响应1、阶跃响应:阶跃响应常用格式:、step(sys);其中sys可以为连续系统,也可为离散系统。、step(sys,Tn);表示时间范围 0-Tn。、step(sys,T);表示时间范围向量T指定。4、Y=step(sysT);可详细了解某段时间的输入、输出情况。2、脉冲响应:QO 脉冲函数在数学上的精确定义:f (x)dx N0f (x) =0,t 0其拉氏变换为:f

5、(s) =1Y(s) =G(s)f (s) =G(s)所以脉冲响应即为传函的反拉氏变换。脉冲响应函数常用格式:impulse(sys);impulse(sys,Tn);impulse(sys,T);Y = impulse(sys,T)分析系统稳定性有以下三种方法:1、利用pzmap绘制连续系统的零极点图;2、利用tf2zp求出系统零极点;3、利用roots求分母多项式的根来确定系统的极点impulse、系统的动态特性分析impulse、Matlab提供了求取连续系统的单位阶跃响应函数step、单位脉冲响应函数零输入响应函数in itial以及任意输入下的仿真函数Isim.四、实验内容 (一)稳

6、定性4321.系统传函为Gs 一产严产严 6,试判断其稳定性s5 +3s4 +4s3+2s2+7s+2num=3 2 5 4 6; den=1 3 4 2 7 2; sys=tf( num,de n); p=roots(de n) t=0:0.01:3; figure(1)p =-1.7680 + 1.2673i-1.7680 - 1.2673i0.4176 + 1.1130i0.4176 - 1.1130i-0.2991因为有根在一象限即有极点在S的右半平面所以不稳定s2 +2s+2S4 7S3 3s2 5s 2s2 +2s+2S4 7S3 3s2 5s 2的极点。den=1 7 3 5 2

7、;sys=tf( num,de n); figure(1) pzmap(sys);p=roots(de n)p =-6.65530.0327 + 0.8555i0.0327 - 0.8555i-0.4100(一)阶跃响应1.二阶系统G s二2一相s +2s+10键入程序,观察并记录单位阶跃响应曲线zeta=1;num=10;den=1 2*zeta 10;sys=tf( num,de n);p=roots(de n)t=0:0.01:10;figure(1)step(sys,t);gridP =-1.0000 + 3.0000i-1.0000 - 3.0000i计算系统的闭环根、阻尼比、无阻尼

8、振荡频率,并记录代码num=10;den=1 2 10;sys=tf( num,de n);damp(de n)结果Eige nv alue Dampi ng Freq. (rad/s)-1.00e+000 + 3.00e+000i3.16e-0013.16e+000-1.00e+000 - 3.00e+000i3.16e-0013.16e+000记录实际测取的峰值大小、峰值时间及过渡过程时间,并填表:实际值理论值峰值C 干匚max1.351.37峰值时间tD p1.051.047过渡时间ts2.523.003.544.0004)修改参数,分别实现记录n0=10;d0=1 2 10;step(

9、 n0,d0);hold onn1= n0;d 仁1 6.32 10;step( n1,d1);n2=nO;d2=1 12.64 10;5)修改参数,分别写出程序实现Ww0和Wn2 =2WO的响应曲线,并记录n0=10;d0=1 2 10;step( nO,dO);hold onn1=2.5;d1=1 6.32 2.5;step( n1,d1);n2=40;d2=1 12.64 40;step (n 2,d2)2作出以下系统的阶跃响应,并与原系统响应曲线进行比较,作出相应的实验分析结果 s =10 ,有系统零点的情况s2 +2s+10Num0=10Num1=2 10;den=1 2 10;st

10、ep num0,de n;step num1,de n;2 s2 +0 5s +10G2S = *2,分子、分母多项式阶数相等s2 +2s+102Num=10;Num1=1 0.5 10;den=1 2 10;g0=tf( num,de n);g1=tf( num1,de n);step(g0,g1);Step Responses + 0 5s(3) G2 S = 2,分子多项式零次项为零2s2 +2s+10Num0=10;Num1=1 0 0.5;den=1 2 10; g0=tf( num0,de n); g1=tf( num1,de n); step(g0,g1);l rm号IpStep

11、 Response,原响应的微分,微分系数为1/10(4) G2s = ,原响应的微分,微分系数为1/10s+2s+10Num0=10 ;den=1 2 10;num 仁1 0g0=tf( num0,de n);g1=tf( num1,de n);TimeTimestep(g0,g1);单位阶跃响应:C(s) 25求该系统单位阶跃响应曲线,并在所得图形上加网格线和标题用 Matlab C(s) 25求该系统单位阶跃响应曲线,并在所得图形上加网格线和标题用 Matlab 求二阶系统 G(s) =120 和 G(s)=S2+12s+120001s +0.002a0.01的峰值时间tp上升时R(s)

12、 S2 4s 25 num=25;den=1 4 25; sys=tf( num,de n);t=0:0.01:10; figure(1) step(sys,t);(三)系统动态特性分析间tr调整时间ts超调量C%num=120;den=1 12 120;sys=tf( num,de n);figure(1)step(sys,t);峰值时间tp=0.34上升时间tr =0.197调整时间ts =0.483超调量二% =12.8n um=0.01;den=1 0.002 0.01;sys=tf( num,de n);t=0:0.01:10;figure(1)step(sys,t);五实验报告要求

13、:完成上述各题分析阻尼比、无阻尼振荡频率对系统阶跃响应和脉冲响应的影响答:阻尼振荡频率越大,系统响应时间越短。阻尼比越小,系统超调量越大。通过阻尼比和阻 尼振荡频率,可以确定无阻尼振荡频率。分析零初值、非零初值与系统模型的关系答:当系统为典型的二阶系统时,初值为0;如果二阶系统加上一个零点0,初值仍为0;如果系统加上2个或者2个以上的零点,相当于系统有初始储能,此时初值变为1.分析响应曲线的稳态值与系统模型的关系答:当系统为典型的二阶系统时,稳态值为1;如果二阶系统加上一个零点,则稳态值变为0;如果二阶系统加上一个非0的零点,则稳态值仍为1,但系统加速;如果系统加上2个或者2个以上的零点,相当

14、于系统有初始储能。分析零极点对系统性能的影响答:系统零极点有加速阶跃响应的影响。实验二MATLAB及仿真实验(控制系统的根轨迹分析)一 实验目的1 利用计算机完成控制系统的根轨迹作图了解控制系统根轨迹图的一般规律3利用根轨迹图进行系统分析预习要点预习什么是系统根轨迹?闭环系统根轨迹绘制规则。实验方法方法:当系统中的开环增益k从0到变化时,闭环特征方程的根在复平面上的一组曲线为根轨迹。设系统的开环传函为:G0(s)二 kD,则系统的闭环特Q(s)征方程为:1 G0 (s) = 1 k n(s)= 0Q(s)根轨迹即是描述上面方程的根,随k变化在复平面的分布。MATLAB画根轨迹的函数常用格式:禾

15、U用Matlab绘制控制系统的根轨迹主要用pzmap rlocus , rlocfind , sgrid 函数。1、零极点图绘制p,z=pzmap(a,b,c,d):返回状态空间描述系统的极点矢量和零点矢量,而不在屏 幕上绘制出零极点图。p,z=pzmap( num,de n):返回传递函数描述系统的极点矢量和零点矢量,而不在屏幕上绘制出 零极点图。pzmap(a,b,c,d)或pzmap(num,den):不带输出参数项,则直接在s复平面上绘制出系统对应的零极点位置,极点用x表示,零点用o表示。pzmap(p,z):根据系统已知的零极点列向量或行向量直接在s复平面上绘制出对应的零极点位置,极

16、点用X表示,零点用0表示。2、根轨迹图绘制rlocus(a,b,c,d)或者rlocus(num,den):根据SISO开环系统的状态空间描述模型和传递函数模型,直接在屏幕上绘制出系统的根轨迹图。开环增益的值从零到无穷大变化。rlocus(a,b,c,d,k)或rlocus(num,den,k):通过指定开环增益k的变化范围来绘制系统的根轨迹图。r=rlocus(num,den,k)或者r,k=rlocus(num,den):不在屏幕上直接绘出系统的根轨迹图,而根据开环增益变化矢量k,返回闭环系统特征方程1 +k*num(s)/den(s)=0 的根 r,它有 length(k)行,lengt

17、h(den)-1 列,每行对应某个k值时的所有闭环极点。或者同时返回k与r。若给出传递函数描述系统的分子项num为负,则利用rlocus函数绘制的是系统的零度根轨迹。(正反馈系统或非最小相位系统)3、rlocfind()函数k,p=rlocfind(a,b,c,d) 或者k,p=rlocfind(num,den)它要求在屏幕上先已经绘制好有关的根轨迹图。然后,此命令将产生一个光标以用来选它要求在屏幕上先已经绘制好有关的根轨迹图。然后,此命令将产生一个光标以用来选p为此点处的择希望的闭环极点。命令执行结果:kp为此点处的系统闭环特征根。不带输出参数项k,p时,同样可以执行,只是此时只将k的值返回

18、到缺省变量ans中。4、sgrid()函数sgrid :在现存的屏幕根轨迹或零极点图上绘制出自然振荡频率wn、阻尼比矢量z对应的格线。sgrid(new):是先清屏,再画格线。sgrid(z,w n):则绘制由用户指定的阻尼比矢量2、自然振荡频率wn的格线。四实验内容Gs 二kg1s(s +1 0s +2 )要求:(a)记录根轨迹的起点、终点与根轨迹的条数;num=1;den=1 3 2 0;rlocus (nu m,de n)图中三条不同颜色的线表示三条不同的根轨迹,起点分别为0, -1 , -2.(b)确定根轨迹的分离点与相应的根轨迹增益;num=1;den=1 3 2 0;rlocfi

19、nd(nu m,de n)如上图所示,可以看出分离点是-0.423,此时的增益为0.385.(b)确定临界稳定时的根轨迹增益kgLnum=1;den=1 3 2 0;rlocfi nd(nu m,de n)2.G(s)2.G(s)二Kgs 3s s 2由上图可知,当系统临界稳定时的增益值为6.1.要求:确定系统具有最大超调量时的根轨迹增益;k=1; z=-3;P=0,-2;sys=zpk(z,p,k);rlocus(sys)由图可知,超调量最大为1.16,此时的增益为2.18绘制下列各系统根轨迹图。n um=1 2 4;den=co nv(1 0,co nv(1 4,co nv(1 切,1 4

20、 切);g=tf( num,de n);rlocus (g);绘制下列各系统根轨迹图。开环传递函数(1)G(S)H(S)二k(s 0.2)S (S 36)72num=1 0.2;den=con v(1 0 0, 1 3.6);g=tf( num,de n);rlocus (g);(2) G(s)H(s)厂s(s+0.5)(s +0.6s+10)n um=1;den=1 0.6 10.8 5 0;g=tf( num,de n);rlocus(g);Root Locus4QmReal Axis4QmReal Axis第-1,c og=tf( num,de5);试绘制下面系统根轨迹图rlocus(g

21、);num=1 吹心)*den=con v(1 0,co实验二MATLAB及仿真实验(控制系统的频域分析)学习利用MATLA进行以下实验,要求熟练掌握实验内容中所用到的指令, 并按内容要求完成实验。一实验目的利用计算机作出开环系统的波特图观察记录控制系统的开环频率特性控制系统的开环频率特性分析 二预习要点预习Bode图和Nyquist图的画法;映射定理的内容;Nyquist稳定性判据内容。三实验方法1、奈奎斯特图(幅相频率特性图)对于频率特性函数G(jw),给出w从负无穷到正无穷的一系列数值,分别求出Im(G(jw)和Re(G(jw)。以Re(G(jw)为横坐标,Im(G(jw)为纵坐标绘制成

22、为 极坐标频率特性图。MATLAB提供了函数nyquist()来绘制系统的极坐标图,其用法如下:nyquist(a,b,c,d):绘制出系统的一组Nyquist曲线,每条曲线相应于连续状态空间系统a,b,c,d 的输入/输出组合对。其中频率范围由函数自动选取,而且在响应 快速变化的位置会自动采 用更多取样点。nyquist(a,b,c,d,iu):可得到从系统第iu个输入到所有输出的极坐标图。nyquist(num,den): 可绘制出以连续时间多项式传递函数表示的系统的极坐标图。nyquist(a,b,c,d,iu,w)或 nyquist(num,den,w):可利用指定的角频率矢量绘制出系

23、统的极坐标图。当不带返回参数时,直接在屏幕上绘制出系统的极坐标图(图上用箭头表示w的变化方向,负无穷到正无穷)。当带输出变量re,im,w引用函数时,可得到系统频率特性函数 的实部re和虚部im及角频率点w矢量(为正的部分)。可以用plot(re,im)绘制出对应w从负无 穷到零变化的部分。2、对数频率特性图(波特图)对数频率特性图包括了对数幅频特性图和对数相频特性图。横坐标为频率w,采用对数分度,单位为弧度/秒;纵坐标均匀分度,分别为幅值函数20lgA(w),以dB表示;相角,以度表 示。MATLAB提供了函数bode()来绘制系统的波特图,其用法如下:bode(a,b,c,d,iu):可得

24、到从系统第iu个输入到所有输出的波特图。bode(a,求取系统对数频率特性图(波特图):bode()求取系统奈奎斯特图(幅相曲线图或极坐标图):nyquist() b,c,d):自动绘制出系统的一组Bode图, 它们是针对连续状态空间系统a,b,c,d的每个输入的Bode图。其中频率范围由函数自动选取,而且在 响应快速变化的位置会自动采用更多取样点。bode(num,den):可绘制出以连续时间多项式传递函数表示的系统的波特图。bode(a,b,c,d,iu,w)或bode(num,den,w):可利用指定的角频率矢量绘制出系统的波特图。当带输出变量mag,pha,w或mag,pha引用函数时

25、,可得到系统波特图相应的幅值mag相角相角以度为单位,幅值可pha及角频率点w矢量或只是返回幅值与相角。相角以度为单位,幅值可转换为分贝单位: magdb=20X loglO(mag)四实验内容1. 用Matlab作Bode图.要求:画出对应Bode图,并加标题./ 、25(1) G(s) = 2s +4s+25num=25;den=1 4 2;g=tf( num,de n);Bode(g)G(s籍Es(s +1.2s +9)num=c on v(9,1 0.2 1);den=co nv(1 0,1 1.2 9);g=tf( num,de n);Bode(g)2. 用Matlab作Nyquis

26、t图.要求画对应Nyquist图,并加网格标题. n um=1;den=1 0.8 1;g=tf( num,de n);axis(-270 0 -40 40);nyquist(g);3 .典型二阶系统g (3 .典型二阶系统g (s)nS2 +2nSp2,试绘制取不同值时的Bode图。取n =6*:F1 0.1: 0.1:1.0。wn=6;zn b=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1; n=w 门人 2;for k=z nb d=1 2*k*w n wnA 2;sys=tf( n, d);bode(sys);hold on end4.某开环传函为:g(s) =50,试绘制系统的Nyquist曲线,并判断闭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论