版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、关于二次函数的最大值与最小值第1页,共17页,2022年,5月20日,18点1分,星期四二次函数:( a0 )xa0a00yx0y第2页,共17页,2022年,5月20日,18点1分,星期四1.抛物线y=2x2-5x+6有最值; y=-3x2-5x+8有最值;针对性简单基础知识训练当a0时,二次函数有最小值小大第3页,共17页,2022年,5月20日,18点1分,星期四例1、如图,一边靠学校院墙,其他三边用12 m长的篱笆围成一个矩形花圃,设矩形ABCD的边AB=x m,面积为S。(1)写出S与x之间的函数关系式; (2)当x取何值时,面积S最大,最大值是多少?ADCB(1) S=x(12-2
2、x)即S=-2x+12x(2) S=-2x+12x =-2(x-3)+18利用配方法配成顶点式:y最大或最小=k第4页,共17页,2022年,5月20日,18点1分,星期四如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。 ABCD解: (1) AB为x米、篱笆长为24米 花圃宽为(244x)米 (3) 墙的可用长度为8米 (2)当x 时,S最大值 36(平方米) Sx(24
3、4x) 4x224 x (0 x6) 0244x 8 4x6当x4m时,S最大值32 平方米利用公式:y最大或最小=第5页,共17页,2022年,5月20日,18点1分,星期四4.已知二次函数y=2(x-h)2+k,经过 点(3,5)(7,5),则对称轴为, 最小值为;针对性简单基础知识训练利用对称轴和对称点坐标X=5-3第6页,共17页,2022年,5月20日,18点1分,星期四1.利用公式:y最大或最小= 在顶点处直接取得2.利用配方配成顶点式:y最大或最小=k3.利用对称轴和对称点坐标求最值的方法第7页,共17页,2022年,5月20日,18点1分,星期四例2:某商场将进价40元一个的某
4、种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?分析:利润=(每件商品所获利润) (销售件数)设每个涨价x元, 那么(3)销售量可以表示为(1)销售价可以表示为(50+x)元(x 0,且为整数)(500-10 x) 个(2)一个商品所获利润可以表示为(50+x-40)元(4)共获利润可以表示为(50+x-40)(500-10 x)元第8页,共17页,2022年,5月20日,18点1分,星期四答:定价为70元/个,利润最高为9000元.解:设每个商品涨价x元, 那么 y=(50+x-40)(500-10 x)=-1
5、0 x2 +400 x+5000 =-10 (x-20)2 -900 (0 x50 ,且为整数 )=- 10(x-20)2 +9000第9页,共17页,2022年,5月20日,18点1分,星期四例1、求下列二次函数的最大值或最小值x0y解:x0y解:当 x=1时,当 x=1时,x=1x=1141-2第10页,共17页,2022年,5月20日,18点1分,星期四例2、求下列函数的最大值与最小值x0y解:-31第11页,共17页,2022年,5月20日,18点1分,星期四解:函数 y = f(x) 在-3,1上为减函数0 xy1-3第12页,共17页,2022年,5月20日,18点1分,星期四解:
6、 函数 y = f(x)在-1,2上为增函数x0y-12第13页,共17页,2022年,5月20日,18点1分,星期四计算闭区间端点的函数值,并比较大小。2、判断取得最值时的自变量是否在闭区间内。3、求闭区间上二次函数的最值的步骤1、配方,求二次函数的顶点坐标。第14页,共17页,2022年,5月20日,18点1分,星期四1、如图,在ABC中B=90,AB=12cm,BC=24cm,动点P从A开始沿AB边以2cm/s的速度向B运动,动点Q从B开始沿BC边以4cm/s的速度向C运动,如果P、Q分别从A、B同时出发。(1)写出PBQ的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围;(2)当t为何值时,PBQ的面积S最大,最大值是多少? QPCBA课时训练BP=12-2t,BQ=4tPBQ的面积:S=1/2(12-2t) 4t即S=- 4t+24t=- 4(t-3)+36第15页,共17页,2022年,5月20日,18点1分,星期四练习1、已知:用长为12cm的铁丝围成一个矩形,一边长为xcm.,面积为ycm2,问何时矩形的面积最大?解: 周长为12cm, 一边长为xcm , 另一边为(6x)cm yx(6x)x26x (0 x6) (x3) 29 a10, y有最大值 当x3cm时,y最大值9 cm2,此时矩形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年智能食品营养秤项目评估分析报告
- 2024年超高速电路项目评估分析报告
- 2024至2030年微波片状电容器项目投资价值分析报告
- 2024至2030年中国布袋式弹簧数据监测研究报告
- 土方机械产品入市调查研究报告
- 夹式耳环市场洞察报告
- 2024年桩基工程建设项目合同样例
- 编写商业合作合同书的技巧
- 浅度溃疡期护理过程
- 糖尿病酮症酸中毒影像学
- PBL教学法在临床护理教学中的应用
- 23秋国家开放大学《法律咨询与调解》形考任务1-4参考答案
- 读后续写人与动物-天使狗狗的守护讲义 高三英语作文复习写作专项
- 课件大班科学活动《有趣的影子》
- 责任心的力量PPT模板:共建美好世界
- 监控施工方案四篇
- 某标准件厂冷镦车间低压配电系统及车间变电所设计(超详细)
- 紫金矿业污染事件商业伦理分析
- 体检指标分析课件
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题精华集选附答案
- 中小学教师教育教学水平能力测试成绩单
评论
0/150
提交评论