版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【Word版本下载可任意编辑】 ZigBee的光伏照明控制系统设计 设计一种基于ZigBee无线网络的光伏照明控制系统,给出系统的网络拓扑构造和节点的硬件设计方案,以及软件构造设计。该系统采用CC2430实现无线数据传输,采用CC2591功率放大器提高发射功率,传输距离远,可靠性高,有效地克服了传统照明控制方式落后和布线复杂等缺点。 引言 光伏发电作为利用太阳能的主要方式,已经得到广泛的应用。光伏照明是一种独立的光伏发电系统,主要用于城市和建筑物照明系统的建设和改造。目前,照明控制系统中多采用有线网络方式,维护起来比较复杂,如何简化施工、降低成本并实现远距离控制是一个值得探讨的问题。本文介绍了
2、一种利用ZigBee无线传感器网络技术实现光伏照明系统远程监控的方案,并给出了详细的软硬件设计。 1 光伏照明控制系统组成及工作原理 光伏照明控制系统由光伏发电系统、无线通信系统和监控计算机3个部分组成。 光伏发电系统由建筑顶部的太阳能电池板、铅酸蓄电池组和光伏充电机构成。太阳能电池是照明系统的输入电源,为照明系统提供照明和控制所需电能。白天,在光照充足的条件下将所接收的光能转换为电能,经光伏充电机对蓄电池组充电;夜晚,蓄电池组将储存的电能经光伏充电机切换输出到路灯负载。当光伏充电机对蓄电池组开展充电时,为延长蓄电池寿命,必须防止蓄电池处于过充电或者过放电的状态。因此,需要对光伏充电机充电电流
3、、电压和发电量等数据开展实时监控和保存,还要求能对路灯开展独立的开关控制。 由于本系统中太阳能电池板位于图书馆顶部,监控计算机处于相隔200 m的另外一个建筑物中,中间相隔了水池,如果采用有线通信方式则需要重新开展布线,施工复杂且成本较高,因此,采用无线通信网络。无线通信方式不仅简单灵活,无需考虑布线问题,还可以通过和其他总线通信方式的结合,实现远距离数据传输和路灯控制。采用ZigBee无线传感器网络技术可实现对充电机状态数据的传输;同时,监控计算机可以通过无线网络控制路灯的开关状态,实现了对充电机状态的实时监控和灯光控制效果。控制范围在300 m以内,如果增加路由器,还可扩展到更远的范围。
4、ZigBee是一种短距离、低速率、低功耗、低成本和低复杂度的无线传输技术,非常适合于低功耗和低数据量的短距离无线传输。ZigBee的低功耗特点限制了节点之间的通信距离(一般为70 m)。本系统中,节点之间的距离超过了其正常通信距离。有2种解决方法:一种是通过增加路由器节点来扩大覆盖范围,缺点是增加硬件成本;另一种是利用PA(Power Amplification,功率放大)提高发射功率,该方法较为简单且成本较低。本设计中采用后者来扩大网络覆盖范围。 ZigBee设备可分为全功能设备(FFD)和精简功能设备(RFD)。FFD可以与RFD或者FFD通信,而RFD只能和FFD通信;FFD可作为网络协
5、调器、路由器或终端设备,RFD只能作为终端设备。本系统中网络协调器和监控计算机通过RS485总线相连,负责建立、管理和维护网络,控制其他节点接收数据等功能。路由器通过RS485总线和光伏充电机相连,实现对其数据的采集和控制,终端节点接收监控计算机的命令控制路灯电源的开关。ZigBee网络拓扑构造支持星形(Star)、树形(Clustetree)和网状(Mesh)。为简化设计,无线网络采用树形网络拓扑,系统组成如图1所示。 监控计算机负责光伏数据采集和系统管理,通过RS485总线和安装在户外的网络协调器开展通信。光伏充电机数据通过RS485总线传送到路由器节点,再由协调器转发到监控计算机。路由器
6、还起到延长ZigBee网络传输距离的作用。监控计算机通过网络协调器发送命令给路由器,实现对充电机电源开关的切换控制。路灯供电线缆通电后,终端节点参加ZigBee网络。网络协调器对终端节点开展检查,并将节点状态传输给监控计算机。监控计算机通过网络协调器发送命令给各个终端节点,控制各个节点路灯电源开关导通或者断开,从而实现路灯的单独或者分段照明控制。当需要实现景观灯效果时,可通过监控软件设计向各个终端节点发送相应的控制命令。 2 硬件节点设计 考虑到无线通信系统中各个节点的功能不完全相同,为了方便硬件设计和降低成本,对硬件部分开展了模块化处理。节点的部分为ZigBee通信模块,设计成只负责RF收发
7、,其他部分由路灯开关模块、电源和RS485通信模块等构成。无线通信模块采用支持ZigBee协议的超低功耗SoC芯片CC2430。该芯片集成ZigBee射频RF前端、内存和微控制器,具有8位增强型8051 MCU、128KB可编程闪存和8 KB的RAM,另外还包含AD转换器、定时器、AESl28协处理器、看门狗定时器、休眠模式定时器、上电复位电路、掉电检测电路以及21个可编程IO引脚。TI公司提供的ZigBee协议栈,可以方便地完成系统的硬件和软件设计。 2.1 ZigBee通信模块硬件设计 图2为ZigBee通信模块原理图。经过现场试验发现,由于网络协调器和其他节点之间距离较远,只采用CC24
8、30时网络数据传输不稳定。为延长无线通信模块的通信距离,又采用了TI公司的高性能射频前端CC2591。CC2591可提供22 dBm的输出功率,能够与CC2430无缝连接,射频输入输出之间不需要增加额外的匹配网络。简单起见,图中没有给出电源和退耦电路、GPIO、JTAG等部分,空余引脚通过排座引出以便与其他模块连接。 CC2591的HGM引脚为增益控制,当它为高电平时处于高增益模式;EN和PAEN为高电平时CC2591工作在正常模式,为低电平时进入低功耗模式。R1、R2为偏置电阻,为晶体振荡器提供合适的工作电流。天线采用50 鞭状天线。由于ZigBee模块工作在2.4 GHz频段,对PCB设计
9、要求很高,PCB板材、元件封装、布局和布线必须参照TI公司的参考设计。特别是天线阻抗匹配部分,在布线中应直接采用TI公司提供的GERBER文件,复制其PCB布线方式才能保证CC2591的高性能和稳定性。另外,PCB的电源退耦和地线处理也非常重要,退耦电容应尽可能接近电源引脚,PCB空余的部分需开展覆铜接地处理,在顶层和底层覆铜之间按照一定的间隔用过孔相连。 2.2 协调器和路由器硬件设计 由于协调器和路由器都需要通过RS485总线和其他设备开展远距离通信,因此需要设计RS485通信模块与ZigBee通信模块相连。通信模块采用MAX485和光耦实现,MAX485通过CC2430的PO.5脚完成R
10、S485收发控制。CC2430电源采用LTlll7-3.3等芯片供电。在ZigBee协议中,网络协调器负责建立网络和实现路由控制等功能,因此必须保持工作状态,保证数据采集的可靠性和稳定性。本系统中,网络协调器和路由器正常工作时采用外部交流电源供电。当外部交流电源掉电时,通过微处理器监控芯片ADM690实现电源切换,利用电池组对其供电,以保证网络的稳定工作。ADM690具有低功耗、低导通电阻和大电流输出等特性,非常适合实现微处理器的电池后备功能。该电路设计如图3所示。其中,R1为充电限流电阻,在外部电源正常时可以对电池涓流充电。 2.3 终端节点硬件设计 终端节点的功能是接收协调器发送的指令控制
11、路灯开关。其电源是在监控计算机发送命令到光伏充电机对路灯供电线缆供电之后提供,因此硬件部分不需要电池后备功能、光伏照明系统中供电电压为直流220 V,终端节点电源部分采用DC-DC开关电源产生5 V直流供电,路灯开关控制则通过CC2430的GPIO和三极管控制继电器实现。由于CC2430只有引脚P1.O和P1.1具有20 mA的驱动能力,而其他引脚驱动电流为4 mA,所以使用SN74HC04D作为输出缓冲。其原理图如图4所示。 3 系统软件设计 系统软件主要包括ZigBee协调器节点程序、路由器节点程序、终端节点程序和监控计算机程序。监控计算机程序实现对光伏照明系统的监控和数据处理,LED路灯
12、通断控制,以及与之相连的另外一套光伏发电系统和环境监测系统的数据采集和监控。监控计算机与协调器节点通信通过二进制编码的方式开展通信,每隔5 s发送1次采集命令。其数据包格式如下: 其中,数据包*(HEADER)占2字节,可设置为0 x81、Ox82,用于区分是计算机数据包输出还是数据包输入;数据长度(LENGTH)为1字节;命令类型包括充电机数据采集、路灯开关状态采集、环境参数采集等;数据字节数由LENGTH指定;数据CRC校验占1字节。 ZigBee节点程序是在TI公司提供的ZStack-1.4.3-1.2.1协议栈的根底上编写的,可以实现网络建立、节点参加和退出、数据传输等功能。该协议栈将
13、应用层和堆栈层开展了分离,提供了类似于操作系统的运行机制(OSAL)(主要包括任务的注册、初始化、启动,任务间的消息交换,任务同步,中断处理,以及时间管理和内存分配等),具有很好的可移植性。 节点程序流程如图5所示。当对硬件和协议栈各层初始化后,采用有限状态机以事件轮询方式对事件开展处理。如果同时有几个事件发生,则判断事件优先级后逐次处理。该协议栈提供了丰富的API函数供用户调用,这种软件构架可方便地构造用户应用程序。由于对终端节点的供电是由光伏充电机根据监控计算机的命令来控制,因此在正常情况下终端节点每天都会加人和退出网络。 ZigBee节点之间的通信有两种寻址方式,分别通过固定的64位IE
14、EE地址和16位网络地址来寻找网络设备。当节点参加ZigBee网络时,它可以通过协调器随机获取的l6位网络地址。光伏照明系统要求能按照路灯的编号任意控制其点亮或者关闭,而要与特定节点通信必须采用IEEE地址,故利用TI公司提供的SmartRF软件对ZigBee节点的64位IEEE地址开展人工分配。协调器向终端节点传送数据使用AF_DataReqt-lest()函数实现,该函数需要节点的网络地址作为参数,通过IEEE地址获取16位网络地址的功能由NLME_GetShortAddr()函数实现。程序设计中,在应用层添加用户所需要的任务,对接收到的事件开展处理。节点在启动时需完成以下工作:初始化CC2430和协议栈;帮助协调器节点建立ZigBee网络,设置网络PAN ID,等待其他节点参加网络;对监控计算机传送的命令开展解析和转发;读取路由器和各个终端节点发送的状态数据,并转发给监控计算机处理。 配置ZigBee设备对象(ZD0)端点时,网内的所有节点其端点ID和端点描述符必须相同,否
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 标准体育场地租赁合同2024年度范本
- 安徽省宿州市省、市示范高中2024-2025学年高一上学期11月期中考试 化学 含解析
- 饭店服务员合同
- 别墅庭院绿化设计与施工合同二零二四年
- 2024年度虚拟现实技术研发劳务合同
- 二零二四年企业信息系统升级改造合同
- 二零二四年度软件开发合同:某互联网公司与某软件开发团队签订合同3篇
- 二零二四年度智能零售系统开发与部署合同
- 股权比例合同范本
- 受法律保护的土地转让协议书(2篇)
- 公交公司冬季安全行车培训
- 文学短评三百字
- 小学美术-点彩游戏-苏少版
- 民法典买卖合同
- 人工智能在环境保护与资源管理中的应用与创新
- 冬奥会饮食健康知识讲座
- 2024年的大数据与人工智能
- 热塑性树脂课件
- 劳务外包服务方案(技术方案)
- 血常规报告单
- 儿童绘本故事:牙齿大街的新鲜事
评论
0/150
提交评论