下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、自主广场我夯基 我达标1转动图中各转盘,指针指向红色区域的概率最大的是( )图7-8思路解析:由于转盘指针指转盘圆周上任一点是等可能的,所以此题是一个几何概型问题.则指针指向各色区域的概率应为各色区域所对应的圆弧的长度与圆的周长之比.由题图可知指针指向红色区域的概率最大应是图形D,因为在此图形中红色区域所对应的圆弧长为圆周长的一半.答案:D2某人向下图的靶子上射箭,假设能中靶,且箭头落在任何位置都是等可能的,最容易射中阴影区的是( )图7-9思路解析:由于箭头落在图中任意一点的可能性是相等的,箭头射中阴影区的概率应为阴影的面积与图形面积的比值.若最容易射中,则阴影部分的面积与图形的面积的比值最
2、大.答案:B3在线段0,3上任取一点,则此点坐标不小于2的概率是( )A B C D思路解析:在线段0,3上任取一点的可能性是相等的,若在其上任意取一点,此点坐标不小于2,则该点应落在线段2,3上.所以,在线段0,3上任取一点,则此点坐标不小于2的概率应是线段2,3的长度与线段0,3的长度之比,即为.答案:A4几何概型的两个特征:(1)_;(2)_.思路解析:充分利用几何概型的定义.在几何概型中我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.答案:(1)每次试验的结果是无限多个,且
3、全体结果可用一个有度量的区域来表示(2)每次试验的各种结果是等可能的5某人忘记了时间去看闹钟,看闹钟的一刹那,秒针指在3和5之间的概率是_.思路解析:由于闹钟的秒针指在060秒的任意一时刻的可能性是相等的,而3和5包含了10,则由几何概型的概率计算公式可得秒针指在3和5之间的概率是=.答案:6圆O有一内接正三角形,向圆O随机投一点,则该点落在内接正三角形内的概率是_.思路解析:向圆内投点,所投的点落在圆形区域内任意一点的可能性相等,所以本题的概率模型是几何概型.向圆O随机投一点,则该点落在内接正三角形内的概率应为正三角形的面积与圆的面积的比.答案:7有一根4m长的木料,小张不知何用,随便把它锯
4、成两截,则截得的两段的长度都不小于1m的概率是多少?思路解析:如下图,设AB长度为4, AD和EB的长度都为1,则要使截得的两段的长度都不小于1m,小张应在DE间锯开.又要锯开此木料,在木料上任意一点下锯的可能性相等,则由几何概型的计算公式可得:截得的两段的长度都不小于1 m的概率是线段DE长度与线段AB长度之比.答案:.8已知线段AB,在这条线段上随机选一点M,M点到A点距离比它到B点距离近的概率是多少?思路解析:如下图:取线段AB的中点C,若M点到A点距离比它到B点距离近,则M点应落在线段AC上,则M点到A点距离比它到B点距离近的概率应为线段AC与线段AB之比.答案:.9某人打开收音机,想
5、听电台报时,问他等待的时间小于15min的概率是多少?(假定电台每小时报时一次)思路解析:因为电台每小时报时一次,我们自然认为这个人打开收音机时处于两次报时之间,例如(13:00,14:00),而且取各点的可能性一样,要遇到等待时间短于15分钟,只有当他打开收音机的时间正好处于13:45至14:00之间才有可能,相应的概率是=0.25.答案:0.25.我综合 我发展10如图7-10所示,有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.图7-10思路解析:细菌在1升水中的分布可以看作是随机的,取得的0.1升水样可视为区域d,1升自来水视为区域D
6、.由于取水样的随机性,所求事件的概率等于水样的体积与总体积之比,即为0.1.答案:0.1.11一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒.当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯;(2)黄灯;(3)不是红灯.思路解析:由于人任何时候到达路中是等可能的,则本题的概率模型是几何概型.则看到红、黄、绿灯的概率为红、黄、绿灯的时间与三种颜色灯时间和的比.答案:(1);(2);(3).12已知线段AB和它的中点M,在AB上随机选取一点,这点到M比到A的距离较接近的概率是多少?思路解析:如下图:取AM中点D,在AB上随机选取一点,这点到M的距离比到A的距离
7、较接近,则所选点应落在线段DB上.则在AB上随机选取一点,这点到M的距离比到A的距离较接近的概率是线段DB与线段AB的比.答案:.13如图7-11所示,一个边长为a的正方形被平均分成了四等份,分别涂上了红、黄、蓝、黑四种颜色,现向正方形区域投掷飞镖,求:(1)飞镖投中黑色或黄色区域的概率是多少?(2)飞镖投不中红色区域的概率是多少?图7-11思路解析:本题的概率模型是几何概型,事件发生的概率为各色区域面积与总面积的比.记“投中黑色区域或投中黄色区域”为事件A;记“投不中红色区域”为事件B.由于飞镖投中正方形区域内任意一点的机会是等可能的,则P(A)为黑色区域和黄色区域的面积和与大正方形面积的比,为,若投不中红色区域,就相当于投中了黑、黄和蓝色区域,则P(B)为黑、黄和蓝色区域的面积和与大正方形面积的比为.答案:(1) ;(2) .我创新 我超越14设有一个均匀的陀螺,其圆周的一半上均匀地刻上区间0,1上的诸数字,另一半上均匀地刻上区间1,3上的诸数字,旋转该陀螺,求它停下时,其圆周上触及桌面的刻度位于0.5,15上的概率. 思路解析:本题的概率模型是几何概型,解本题的关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文《aieiui》课件
- 个人车辆挂靠协议书
- 2024年度高级法律顾问聘用协议2篇
- 基于2024年度的云计算数据中心建设合同
- 2024年大数据分析与运用服务合同2篇
- 2024年度融资合同:新能源项目开发与股权融资协议2篇
- 租房协议书合同范本
- 美食城合作协议美食节合作协议书
- 【高院案例】发包人未能提供符合条件的施工现场导致合同解除案
- 污水处理厂排污合同范本5
- 眼睑手术介绍与手术方法
- 《斯蒂芬·库里》课件
- 抢救及特殊事件报告处理预案
- 基于大数据的施工安全预警模型
- 媒体法与新闻报道媒体道德规范与法律规定
- 2024年中国科学院机关应届生招考聘用笔试历年高频考点-难、易错点荟萃-附带答案详解
- 部编版语文四年级上册-语文园地七-同步练习(含答案)
- 国家开放大学期末机考理工英语3
- 广播电视学专业大学生职业生涯规划书
- 中药材产地趁鲜加工点质量管理自查表
- 神经内科常用特殊药物使用注意事项
评论
0/150
提交评论