版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北师大版八年级数学下册第四章因式分解综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式的因式分解中正确的是( )ABCD2、把多项式分解因式,下列结果正确的是( )ABCD3、下列多项式中有
2、因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2ABCD4、下列多项式:(1)a2b2;(2)x2y2;(3)m2n2;(4)b2a2;(5)a64,能用平方差公式分解的因式有( )A2个B3个C4个D5个5、下列各式中,正确的因式分解是( )ABCD6、下列各式从左至右是因式分解的是( )ABCD7、下列等式中,从左到右的变形是因式分解的是( )ABCD8、下列各式从左到右的变形中,是因式分解的为()Ax(ab)axbxBx23x+1x(x3)+1Cx24(x+2)(x2)Dm+1x(1+)9、下列由左到右的变形,是因式分解的是( )ABCD10、下列各式中,从左到右的变形
3、是因式分解的是()A2a22a+12a(a1)+1B(x+y)(xy)x2y2Cx24xy+4y2(x2y)2Dx2+1x(x+)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在实数范围内因式分解:y22y1_2、因式分解:2a24ab+2b2_3、在ABC中,C90,ACBC,D是AC上点,AD2CD,连接BD,过点D作DEBD与AB的垂线交于点E,DE交AB于点F,若,则线段BC_4、分解因式:a32a2b+ab2_5、把多项式3a26a+3因式分解得 _三、解答题(5小题,每小题10分,共计50分)1、因式分解:(x2+9)236x22、分解因式(1)(2)(3
4、)(4)利用因式分解计算:3、因式分解:4、已知,求的值5、已知实数a、c满足,求的值-参考答案-一、单选题1、D【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解【详解】A a2+abac=a(a-b+c) ,故本选项错误;B 9xyz6x2y2=3xy(3z2xy),故本选项错误;C 3a2x6bx+3x=3x(a22b+1),故本选项错误; D ,故本选项正确故选:D【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键2、D【分析】利用公式即可得答案【详解】解:故选:D【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握公式3、
5、D【分析】根据十字相乘法把各个多项式因式分解即可判断【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2有因式x1的是故选:D【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即4、B【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2b2不能用平方差公式分解因式,故(1)不符合题意;x2y2能用平方差公式分解因式,故(2)符合题意;m2n2能用平方差公式分解因式,故(3)符合题意;b2a2不能用平方差公式分解因式,故(4)不符合题意;a64能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解
6、的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.5、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案【详解】解:,故此选项不合题意;,故此选项符合题意;,故此选项不合题意;,故此选项不合题意;故选:【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键6、A【分析】根据因式分解的定义逐个判断即可【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不是因式分解,故本选项不符合题意;D、,是整式的乘法,不是因式
7、分解,故本选项不符合题意故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解7、C【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断【详解】A. ,变形是整式乘法,不是因式分解,故A错误;B. ,右边不是几个因式乘积的形式,故B错误;C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;D. ,变形是整式乘法,不是因式分解,故D错误【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的关键8、C【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案【详解
8、】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键9、A【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案【详解】解:A、,是因式分解,故此选项符合题意;B、,原式分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了分
9、解因式的定义解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式10、C【分析】根据因式分解的定义逐个判断即可【详解】解:A从左到右的变形不属于因式分解,故本选项不符合题意;B从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C从左到右的变形属于因式分解,故本选项符合题意;D等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式二、填空题1、(y1)(y1)【分析】变形整式为y22y
10、12,前三项利用完全平方公式,再利用平方差公式因式分解【详解】解:y22y1y22y12(y1)2()2(y1)(y1)故答案为:(y1)(y1)【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法是解题的关键2、【分析】先提取公因式2,再利用完全平方公式计算可得【详解】解:原式=故答案为:【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键3、【分析】过点作的延长线于点,连接,先证明,设,设,则,勾股定理分别求得,在与中,根据,列出关于的等式,求得,进而根据,求得的值,即可求得的长【详解】如图,过点作的延长线于点,连接,设,则,设,在中,在中,在中,在
11、中,在与中, 即,解得或(舍去),解得(负值舍去),故答案为:【点睛】本题考查了勾股定理,等腰三角形的性质与判定,掌握勾股定理是解题的关键4、【分析】先提取公因式a,再利用完全平方公式因式分解【详解】解:,故答案为:【点睛】本题考查综合利用提公因式法和公式法因式分解一般有公因式先提取公因式,再看是否能用公式法因式分解5、3(a-1)2【分析】首先提取公因式3,再利用完全平方公式分解因式【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2,故答案为:3(a-1)2【点睛】本题主要考查了综合提公因式和公式法分解因式,熟记公式结构是解题的关键三、解答题1、【分析】利用平方差公式和完全平
12、方公式分解因式即可【详解】解: 【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式2、(1);(2);(3);(4)【分析】(1)先提取公因式,然后利用完全平方公式进行因式分解即可;(2)先分组再用完全平方公式进行运算,再利用平方差公式进行求解;(3)先利用完全平方公式进行因式分解,再用平方差公式进行因式分解即可;(4)分别对分子和分母进行因式分解,然后求解即可【详解】解:(1);(2);(3);(4);【点睛】此题考查了因式分解,涉及了完全平方公式和平方差公式,解题的关键是掌握因式分解的方法以及完全平方公式和平方差公式3、【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可【详解】解:原式【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等4、4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度虚拟现实技术顾问合作协议6篇
- 2024铺面门头装修合同范本:绿色环保建材使用规范
- 2025年度生态旅游项目场地租赁合同3篇
- 组合精练34-语用+文常+名句名篇默写(《论语》《师说》“杜鹃鸟”意象)(学生版)
- 南京2025年江苏南京市江宁区招聘教师381人笔试历年典型考点(频考版试卷)附带答案详解
- 兔子饲养与农业可持续发展策略考核试卷
- 养鸭业风险管理与保险考核试卷
- 发电机组在智能家居与智慧城市的应用考核试卷
- 冰箱维修技术讲解考核试卷
- 2025至2030年中国导电碳油数据监测研究报告
- 医疗器械质量安全风险会商管理制度
- 110kV变电站及110kV输电线路运维投标技术方案(第一部分)
- 消防设施安全检查表
- 绿色制造与可持续发展技术
- 污水处理厂单位、分部、分项工程划分
- 舌咽神经痛演示课件
- 子宫内膜癌业务查房课件
- 社会学概论课件
- 华为经营管理-华为的研发管理(6版)
- C及C++程序设计课件
- 公路路基路面现场测试随机选点记录
评论
0/150
提交评论