版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、拓扑和几何的现代发展欧拉 (1707-1783)多面体的欧拉公式,组合几何,变分分析,几何与力学,极小曲面。高斯 (1777-1855)双曲几何 ( 和罗巴切夫斯基 ( 1792-1856), 波尔约 (1802-1829)一起 ),高斯曲率的内蕴 定义。 )拓扑和几何的现代发展欧拉 (1707-1783)高斯(1817)我越来越确信几何的必然性无法被验证,至少现在无法被人类或为了人类而验证。我们或许能在未来领悟到那无法知晓的空间的本质。我们无法把几何和纯粹是先验的算术归为一类。几何和力学却不可分割。高斯(1817)我越来越确信几何的必然性无法被验证,至少现在黎曼(1826-1866)在抽象定
2、义的空间上引入黎曼度量在无穷小近似下就是欧氏几何。然而只在一阶近似下是等同的。二阶近似由度量的曲率张量来衡量。导致了几何学的革命。 克里斯托费尔,列维-齐维塔,比安基,发展了这类抽象空间上的微积分。黎曼(1826-1866)在抽象定义的空间上引入黎曼度量黎 曼 面后来人们意识到对二维空间,每个黎曼度量都可以写成如果引入复数度量可写成黎 曼 面后来人们意识到对二维空间,每个黎曼度量都可以写成黎 曼 面这样的复坐标在相差一个全纯变换的意义下是唯一的。具有这样复坐标的抽象二维空间称为黎曼面。此概念应用于计算机图形学。黎 曼 面这样的复坐标在相差一个全纯变换的意义下是唯一的。高斯曲率黎曼面的高斯曲率为
3、黎曼面给出称为复流形的首个例子。问题:如何重新发现度量?有一个黎曼面,即给出一个复坐标 z。有一个定义在黎曼面上的曲率函数 K。高斯曲率黎曼面的高斯曲率为高斯曲率 高斯曲率 黎曼度量的曲率在高维情形,黎曼度量的曲率远不是一个数量函数,它依赖于空间在某个截面上是如何弯曲的,称为曲率张量。可以对全部曲率张量缩并,得到一个小的张量,称为里奇张量。记为 。里奇张量是一个对称张量,其迹称为数量曲率。 记为 。黎曼度量的曲率在高维情形,黎曼度量的曲率远不是一个数量函数,爱因斯坦方程黎曼几何被爱因斯坦(在格罗斯曼、希尔伯特帮助下)用来描述广义相对论。广义相对论融合了狭义相对论和引力。爱因斯坦方程 这里 是物
4、质张量(引力由度量 的全部的曲率张量来描述)。爱因斯坦方程对几何学家们启发深刻。这是一个高度非线性理论。( 是引力位势,是未知量)。爱因斯坦方程黎曼几何被爱因斯坦(在格罗斯曼、希尔伯特帮助下)时 空一般地,我们不能期望由爱因斯坦方程定义的时空有很多的对称性。因而,很多经典力学中的守恒量在广义相对论无法直接定义。这里包括质量、动量、角动量等。对于广义相对论中的孤立物理系统,时空在无穷远处基本上是平坦地,因而具渐进对称性。这给出了总质量、总动量和总角动量的定义。时 空一般地,我们不能期望由爱因斯坦方程定义的时空有很多正 质 量一个复杂的问题是在某些合理的条件下,证明总质量是正的。这对应着几何中,在
5、某些数量曲率的限制下,研究三维流形的几何。萧恩和丘成桐用经典的变分方法证明了正质量猜想:研究空间中的极小曲面。后来威腾用狄拉克方程和超引力重新证明了正质量猜想。正 质 量一个复杂的问题是在某些合理的条件下,证明总质量是正求解爱因斯坦方程广义相对论中困难的问题是如何求解爱因斯坦方程。物质张量为零 的情形。黎曼几何中一个非常有趣的问题:能否找到一个闭空间,没有物质却有引力?当空间具超对称性时,该问题较容易。求解爱因斯坦方程广义相对论中困难的问题是如何求解爱因斯坦方程求解爱因斯坦方程例如, 当空间具复坐标 黎曼度量并可写成这种情况下,有一个重要的量有拓扑意义。由陈省身引入,刻画着空间的整体拓扑,称为
6、第一陈类。空间容许真空解要求第一陈类为零。求解爱因斯坦方程卡拉比-丘成桐空间第一陈类为零可以在代数意义下验证。丘成桐证明了第一陈类为零的复曲面上存在具超对称的真空爱因斯坦方程的解。这是卡拉比猜想的一部分。这类空间称为卡拉比-丘成桐空间。椭圆曲线 也是一个卡拉比-丘成桐空间。柏拉图多面体和某些卡拉比-丘成桐空间有着紧密地联系。卡拉比-丘成桐空间第一陈类为零可以在代数意义下验证。丘成桐讲演几何魅力及应用ppt课件精品PPT课件卡拉比-丘成桐空间记 X 为一五次卡拉比-丘成桐空间,其由射影空间中的下述齐次多项式定义: 简单地说,X上d 次有理曲线是一个d 次多项式 解 记 是X上 d 次有理曲线的个
7、数。如何计算 一百多年来一直困扰着数学家们。物理学中 的镜像对称预言可用经典超几何函数来计算所有的 。1998年,连文豪-刘克峰-丘成桐首次给出完整的论证,使问题得以最终解决。卡拉比-丘成桐空间记 X 为一五次卡拉比-丘成桐空间,其由射卡拉比猜想的解决卡拉比猜想的解决也给出了具负宇宙常数的度量。这类度 量实际上是庞加莱在曲面上构造的度量的推广。最显著的断言是一个由复代数多项式定义的空间如果能形 变到一个复线性空间,那么这个空间也是复线性的。可证明一个基本的不等式(米姚卡-丘成桐):对于代数曲 面S, 是曲面的欧拉数, 和曲面的拓扑指标有关。该不等式显示,对代数曲面,存在一些非平凡的拓扑限制。卡
8、拉比猜想的解决卡拉比猜想的解决也给出了具负宇宙常数的度量。全纯1-形式受到流体力学和麦克斯韦方程的启发,嘉当,德拉姆,霍奇,小平邦彦发展了流形上的调和形式理论,将流形上的分析与整体拓扑联系起来。例子,在闭曲面上,每个环柄给出一个全纯1-形式。其给出了在曲面上构造正交网的一种方法。全纯1-形式受到流体力学和麦克斯韦方程的启发,嘉当,德拉姆性质:三角剖分和分解相互独立性质:三角剖分和分解相互独立大范围分析的发展霍奇理论的发展在代数几何中引入了基本的分析工具。黎曼-洛赫公式和阿蒂亚-辛格指标公式被用来解决 代数几何以及量子场论中的基本问题,影响深远。在过去的三十年中,量子理论和量子场论对几何学也有着
9、重要的启发。大范围分析的发展霍奇理论的发展在代数几何中引入了基本的分析工杨振宁-米尔斯理论杨振宁-米尔斯理论也将非线性理论带入几何学。唐纳森理论给出四维流形拓扑研究的重要意义。对埃米特型杨-米尔斯联络的唐纳森-乌伦贝克-丘成桐定理给出代数几何的一个新工具。许多重要的非线性微分方程在现代几何学中变得非常基本平均曲率流调和映照里奇流 (哈密尔顿方程 )这些方程的超对性形式正变得重要非线性理论非常依赖于对线性理论的深刻理解。双曲方程的线性理论还没有被很好的理解。杨振宁-米尔斯理论杨振宁-米尔斯理论也将非线性理论带入几何学弦理论这些方法已经大量应用于现代弦理论。几何对量子场论的研究卓有成效、神奇非凡。
10、微分方程在代数和代数几何中也导致深刻的结果 有着同样的神奇性。数学和大部分物理可以认为是几何的一部分。弦理论这些方法已经大量应用于现代弦理论。讨论我们能直觉地感觉到几何概念或许让几何成为宇宙构成的最好语言。在21世纪,我们将无法区别下面的学科:物理学:量子力学,广义相对论,弦理论。几何学:示性类,指标公式。算子理论。非线性椭圆、抛物方程、双曲系统、混合型方程。 拓扑、代数几何、数论。讨论我们能直觉地感觉到几何概念或许让几何成为宇宙构成的最好语基本原理通过数学上的复杂的计算,基本原理应用于 应用学科。 几何现象,统计现象,非线性方程,非线性 离散现象,等等。 从应用学科中抽象出普适方法,演化成数
11、学 学科。 基本原理。基本原理通过数学上的复杂的计算,基本原理应用于 我毫不犹豫地说,数学家值得为自己的天空去耕耘,值得为了那些在物理学中没有应用的理论去研究。庞加莱 我毫不犹豫地说,数学家值得为自己的天空去耕耘 数学家就象法兰西人,无论你对他们说什么,他们总是翻译成变得完全不同的,自己的语言。歌德 数学家就象法兰西人,无论你对他们说什么,他们总 数学研究介乎物理、文学与工程之间。 物理所以见其真也, 文学所以见其美也, 工程所以见其用也。而三者相通。 以下引文心雕龙论文学之道: 数学研究介乎物理、文学与工程之间。 体 性 夫有天资,学慎始习,斫梓染丝,功在初化,器成彩定,难可翻移。故童子雕琢
12、,必先雅制,沿根讨叶,思转自圆。八体虽殊,会通合数,得其环中,则辐辏相成。故宜摹体以定习,因性以练才,文之司南,用此道也。 人之秉才,迟速异分,文之制体,大小殊功。相如含笔而腐毫,杨雄辍翰而惊梦。桓谭疾感于苦思,王充气竭于思虑, 张衡研京以十年,左思练都以一纪;虽有巨文,亦思之缓也。淮南崇朝而赋骚,枚皋举应诏而成赋,子建援牍如口颂,仲宣举笔似宿构,阮瑀据案而制书,祢衡当食而草奏;虽有短篇,亦思之速也。 人之秉才,迟速异分,文之制体,大小殊功。相 神 思 夫神思方运,万塗竞萌,规矩虚位,刻镂无形,登山则情满于山,观海则意溢于海,我才之多少,将与风云而并驱矣!方其搦翰,气倍辞前,暨乎篇成,半折心始。何则?意翻空而易奇,言征实而难巧也。 是以意授于思,言授于意,密则无际,疏则千里,或理在方寸,而求之域表;或義在咫尺,而思隔山河,是以秉心养术,无务苦虑。 通 变 夫设文之体有常,变文之数无方,何以明其然耶?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临床医生个人先进事迹(5篇)
- 中秋晚会领导致辞范文(10篇)
- 中秋佳节宴会讲话稿范文(5篇)
- 春天课件大班教学课件
- 学会聆听课件教学课件
- 影响电子血压计测量准确的因素
- 价格问题课件教学课件
- 八年级上学期1月期末语文试题
- 南京航空航天大学《电力系统分析》2021-2022学年期末试卷
- 南京工业大学浦江学院《市场营销专业综合实训》2023-2024学年第一学期期末试卷
- 《预防未成年人犯罪》课件(图文)
- 计算机专业职业生涯规划书(14篇)
- GB/T 22838.5-2024卷烟和滤棒物理性能的测定第5部分:卷烟吸阻和滤棒压降
- 评标专家库系统系统总体建设方案
- 学校学生食堂“三防”制度
- 数学-湖湘名校教育联合体2024年下学期高二10月大联考试题和答案
- 2024年农村合作社管理制度范本(二篇)
- 2024年职业病防治考试题库附答案(版)
- 创新实践(理论)学习通超星期末考试答案章节答案2024年
- 二十届三中全会知识点试题及答案【200题】
- GB/T 18385-2024纯电动汽车动力性能试验方法
评论
0/150
提交评论