初一升初二暑假培训班数学_第1页
初一升初二暑假培训班数学_第2页
初一升初二暑假培训班数学_第3页
初一升初二暑假培训班数学_第4页
初一升初二暑假培训班数学_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上精选优质文档-倾情为你奉上专心-专注-专业专心-专注-专业精选优质文档-倾情为你奉上专心-专注-专业1.1探索勾股定理教学目标1、知识与技能目标:掌握直角三角形三边之间的数量关系,学会用符号表示。学生在经历用数格子与割补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。2、能力目标:通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。教学重点、难点重点:用面积法探索勾股定理,理解并掌握勾股定理。难点:计算以斜边为边长的大正方形C面积及割补思想的理解与应用。教学过程在中国古代,人们把弯曲成直角的手

2、臂的上半部分称为勾,下半部分称为股。我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”。所以我国古代把上面的定理称为“勾股定理”。再请学生看一看,读一读:早在三千多年前周朝数学家商高就提出勾三、股四、弦五,并在后来被记载在中国古代著名数学著作周髀算经之中,一千多年后西方的毕达哥拉斯证明了此定理。(设计意图:在探索定理的过程中, 为了突出本节重点,解决难点,我将按下面两个层次设计探索过程。第一方面由等腰直角三角形到一般直角三角形三边关系的研究,体现从特殊到一般的方法,第二方面引导学生用割、补等方法计算正方形C面积到用拼图的方法探索直角三角形三边关系,展示由简单

3、到复杂的思想,探索出勾股定理。)回归生活,应用新知要求:面向全体学生,部分学生可选择从自己需要的层次做起。 A层: 在ABC中,C=90(1)若a=8,b=6,则c= ; (2)若c=20,b=12,a= 。2、若直角三角形中,有两边长是3和4,则第三边长的平方为( )A 25 B 14 C 7 D 7或25 3、情景探索小明的妈妈买来一部29英寸(74厘米)的电视机,小明量了电视机的荧屏后,发现荧屏只有58厘米长46厘米宽,他认为售货员搞错了对不对? (582=3364 462=2116 74.0325480)4、一根旗杆在离地9米处断裂,旗杆顶部落在离旗杆底部12米处,旗杆折断之前有多高?

4、(设计意图:本层是基础性习题,强化学生掌握在直角三角形中已知任意两边,都能利用勾股定理求出第三边的重要解题方法,以及定理的实际应用。以当堂检测学生的达标情况。) B层: 两个边长分别为4个单位和3个单位的正方形连在一起的“L”形纸片,请你剪两刀,再将所得图形拼成一个正方形。 2、做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。( 70.7125000 ) aaaabbccC层:cbaaccbaacbcaac种。其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的

5、证明,就把这一证法称为“总统”证法。下面我们一起来了解这一证法。b b b此证明方法的核心思想是“面积之间的等量关系”。右图是历史上著名b的“弦图”,你能通过此图,利用面积之间的等量关系来证明勾股定理吗?(设计意图:本层题目面向学有余力的学生,注重思维开放性的培养。其中勾股定理总统证法和弦图证法,不但拓展了学生的视野,激发了学生的探究热情,而且使学生感受到勾股定理证明的博大精深。)【巩固练习】1在ABC中,C90,(l)若 a5,b12,则 c (2)若c41,a9,则b 2等腰ABC的腰长AB10cm,底BC为16cm,则底边上的高为 ,面积为 3ABC中,AB15,AC13,高AD12,则

6、ABC的周长为() A42 B32 C42 32 D37 334一个抽斗的长为24cm,宽为7cm,在抽斗里放铁条,铁条最长能是多少?【延伸拓展】1若正方形的面积为2cm2,则它的对角线长为2cm()2已知四边形 ABCD中,ADBC,A90,AB8,AD4,BC6,则以DC为边的正方形面积为 3在ABC中,ACB90,AC12,CB5,M、N在AB上且AMAC,BNBC则MN的长为() A2 B26 C3 D41.2能得到直角三角形吗(一)教学目标(一)教学知识点1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.能对直角三角形的判别条件进行一些综合应用.(二)能力训练要求1.用三边的数量

7、关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想.2.通过对直角三角形判别条件的研究,培养学生大胆猜想,勇于探索的创新精神.教学重点直角三角形的判别条件及其应用;它可用边的关系来判断一个三角形是否是直角三角形。教学难点用直角三角形的判别条件判断一个三角形是否为直角三角形及综合应用直角三角形的知识解题.教学过程前面,我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b,斜边c具有一定的数量关系即a2+b2=c2.我们是否也可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?讲述新课1.古代埃及人作直角其实,古代埃及人就曾用三角形三边的关系作出了直角.下面我们一同演示一下.

8、我这儿有一根绳子,上面有13个等距的结,把这根绳子分成等长的12段.下面我让一个同学同时握住绳子的第(1)个和第(13)个结,再让两个同学分别握住绳子的第(4)个结和第(8)个结,(如下图所示)拉紧绳子,大家观察可以发现什么?下面我们利用直角三角形判定的条件来看几个例题.例题讲解出示投影片(1.2A)例1一个零件的形状如下图所示,按规定这个零件中A和DBC都应为直角.工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?分析:这是一个利用直角三角形的判定条件解决实际问题的例子.解:在ABD中,AB2+AD2=9+16=25=BD2,所以ABD是直角三角形,A是直角.在BCD中,BD2+BC2

9、=25+144=169=132=CD2,所以BCD是直角三角形,DBC是直角.因此这个零件符合要求.随堂练习1.(课本P11)下列几组数能否作为直角三角形的三边长?说说你的理由.(1)9,12,15; (2)15,36,39;(3)12,35,36; (4)12,18,22.解:根据直角三角形的判定条件.(1)92+122=152;(2)152+362=392,所以(1)、(2)两组数可以作为直角三角形的三边;但 (1)解:上述解法是不对的.因为a=10,b=8,c=6,b2+c2=64+36=100=102=a2.即b2+c2=a2.所以由a,b,c组成的三角形两边的平方和等于等三边的平方,

10、利用勾股定理的逆定理可知a,b,c可构成直角三角形,其中a是斜边,b、c是两直角边.评注:在解题时,我们不能简单地看两边的平方和是否等于第三边的平方,而应先判断哪一条边有可能作为斜边.往往只需看最大边的平方是否等于另外两边的平方和.(2)证明:根据题意,画出图形.AB=13 cm,BC=10AD是BC边上的中线BD=CD=5 cm.在ABD中,AD=12 cm,BD=5 cm,AB=13 cm,AB2=169,AD2+BD2=122+52=169.所以AB2=AD2+BD2.则ADB=90.ADC=180ADB=18090=90.在RtADC中,AC2=AD2+CD2=122+52=132.所

11、以AC=AB=13 cm.同步练习(一)选择题1.小红要求ABC最长边上的高,测得AB=8 cm,AC=6 cm,BC=10 cm,则可知最长边上的高是A.48 cmB.4.8 cmC.0.48 cmD.5 cm答案:B2.满足下列条件的ABC,不是直角三角形的是A.b2=c2a2B.abc=345C.C=ABD.ABC=121315答案:D3.在下列长度的各组线段中,能组成直角三角形的是A.5,6,7B.1,4,9C.5,12,13D.5,11,12答案:C4.若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是A.42B.52C.7D.52或7答案:D(注意

12、有两种情况()32+42=52,()32+7=42)5.如果ABC的三边分别为m21,2 m,m2+1(m1)那么A.ABC是直角三角形,且斜边长为m2+1B.ABC是直角三角形,且斜边长2 为mC.ABC是直角三角形,但斜边长需由m的大小确定D.ABC不是直角三角形答案:A(二)解答题1.已知a,b,c为ABC三边,且满足a2+b2+c2+338=10a+24b+26c.试判断解:由已知得(a210a+25)+(b224b+144)+(c226c(a5)2+(b12)2+(c13)2=0由于(a5)20,(b12)20,(c13)20.所以a5=0,得a=5;b12=0,得b=12;c13=

13、0,得c=13.又因为132=52+122,即a2+b2=c2所以ABC是直角三角形.2.阅读下列解题过程:已知a,b,c为ABC的三边,且满足a2c2b2c2=a4b4,试判定ABC的形状.解: a2c2b2c2=a4b4 c2(a2b2)=(a2+b2)(a2b2) c2=a2+b2 ABC是直角三角形问:上述解题过程,从哪一步开始出现错误?请写出该步的序号:_;错误的原因为_;本题正确的结论是_.答案: a2b2可以为零 ABC为直角三角形或等腰三角形这节课我们归纳推理出直角三角形判定条件,并用它去解决生活实际中的问题,最后我们还介绍了求勾股数组的方法.活动与探究给出一组式子:32+42

14、=52,82+62=102,152+82=172,242+102=262(1)你能发现上面式子的规律吗?请你用发现的规律,给出第5个式子;(2)请你证明你所发现的规律.过程:观察式子,要注意这些式子中不变的形式,如等式两边每一项的指数为2,等式左边是平方和的形式,右边是一个数的平方.很显然,我们发现的规律一定是“( )2+( )2=( )2”的形式.然后再观察每一项与序号的关系.如32,82,152,242与序号有何关系,可知32=(221)2,82=(321)2,152=(421)2,242=(521)2;所以我们可推想,第一项一定是(n21)2.(其n1,n为整数).同理可得第二项一定是(

15、2n)2,等式右边一定是(n2+1)2(其中n1,n为整数).(1)解:上面的式子是有规律的,即(n21)2+(2n)2=(n2+1)2(n为大于1的整数).第5个式子是n=6时,即(621)2+(26)2=(62+1)2化简,得352+122=372.(2)证明:左边=(n21)2+(2n)2=(n42n2+1)+4n2=n4+2n2+1=(n2+1)2=右边.证毕.相关文章费尔马费尔马出身于法国的一个皮革商人家庭.由于家境富裕,父亲特意给他请了两个家庭教师,不入校门在家里接受系统教育,小时候的费尔马虽称不上是神童,可也算聪明.费尔马父亲比较开通,不宠爱孩子,因此,费尔马学习十分努力,文科理

16、科都不差,不过他最喜欢的功课还是数学.费尔马是一个不追名逐利的人,因此平时比较清闲,空余时间他常看些古书,尤其爱看古希腊的数学名著.他不时做些题目,还作些数学研究,与当时的数学名家,如帕斯卡、笛卡儿、华利斯等人通信,交流心得体会.由于他刻苦钻研,又敢于进行创造性的思考,所以取得的成果很多.他与笛卡儿并列为解析几何的发明者,又与帕斯卡一起分享开创概率论的荣誉.微积分虽说是由牛顿和莱布尼兹最后完成的,但大家公认费尔马为他们作了奠基工作.不过,费尔马最显赫的业绩是近代数论,也是近代数论的开创者.说起数论,费尔马还是由于读了丢蕃图的算术一书,才开始产生兴趣.在这本书中,丢番图叙述了他是“怎样将一个平方

17、数(z2),拆成两个平方数(x2与y2)之和”的,也即叙述了他对方程x2+y2=z2的求解过程.费尔马非常善于联想,他读了丢番图的这段文章后,由此及彼地提出了一连串的同类问题:“能否将一个立方数(z3)表示为两个立方数( x3与y3)之和;将一个四次方数(z4)表示为两个四次方数(x4与y4)之和;这一连串问题归结起来就是:方程xn+yn=zn是否存在正整数解,其中n是大于或等于2的正整数.当n=2时,方程z2=x2+y2,这是被丢番图和刘徽解决了的勾股方程.十世纪时,阿尔柯坦第曾对n=3的情况,即对方程z3=x3+y3提出过不存在正整数解的结论.显然这都是特殊情况.一旦费尔马所提出的问题得到

18、解决,那么这些特殊情况也就随之解决.费尔马在丢番图著作的空白处写道:“我已经发现了这个结论的一个奇妙的证明,由于这里篇幅太小,写不下”.费尔马果真证明了他自己提出的结论吗?在费尔马死后人们提出了疑问,这个定理公布以后,引起了各国数学家的关注.他们围绕着这个定理顽强地探索着,试图证明它.1995年,数学家怀尔斯终于证明了费尔马大定理,解开了这个困惑世间无数智者300多年的谜.能得到直角三角形吗(二)教学目标:知识与技能掌握直角三角形的判别条件,并能进行简单应用;解决问题会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论重点和难点重点:运用身边熟悉的事物,从多种角度发展数感,会

19、通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论难点:会辨析哪些问题应用哪个结论教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么?已知ABC的两边AB=5,AC=12,则BC=13对吗?创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法这样做得到的是一个直角三角形吗?提出课题:能得到直角三角形吗讲授新课:如何来判断?(用直角三角板检验)这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?就是说,如果三角形的三边为,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时

20、)继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:5,12,13; 6,8, 10; 8,15,17.(1)这三组数都满足a2 +b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形满足a2 +b2=c2的三个正整数,称为勾股数 例1 一个零件的形状如左图所示,按规定这个零件中A和DBC都应为直角工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗? 随堂练习:下列几组数能否作为直角三角形的三边长?说说你的理由9,12,15;15,36,39

21、;12,35,36;12,18,22已知ABC中BC=41, AC=40, AB=9, 则此三角形为_三角形, _是最大角.四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且ABC=900,求这个四边形的面积课堂小结:直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形满足a2 +b2=c2的三个正整数,称为勾股数勾股数扩大相同倍数后,仍为勾股数课后作业:下列几组数能否作为直角三角形的三边长?说说你的理由9,12,15;15,36,39;12,35,36;12,18,22已知ABC中BC=41, AC=40, AB=9, 则此三角

22、形为_三角形, _是最大角.四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且ABC=900,求这个四边形的面积蚂蚁怎样走最近教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,

23、为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在RtABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:、蚂蚁怎么走最近 出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(的值取3) (1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A

24、点到B 点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)AAB; (2)ABB;(3)ADB; (4)AB.哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.、做一做:教材14页。李叔叔随身只带卷尺检测AD,BC是否与底边AB垂直,也就是要检测 DAB=90,CBA=90.连结BD或AC,也就是要检测DAB和CBA是否为直角三角形.很显然,

25、这是一个需用勾股定理的逆定理来解决的实际问题.随堂练习出示投影片1.甲、乙两位探险者,到沙漠进行探险.某日早晨800甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午1000,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,1000时甲到达B点,则AB=26=12(千米);乙到达C点,则AC=15=5(千米).在RtABC中,BC2=AC

26、2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在23米之间(包含2米、3米).3.试一试(课本P15)在我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水

27、面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?我们可以将这个实际问题转化成数学模型.解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得(x+1)2=x2+52,x2+2x+1=x2+25解得x=12则水池的深度为12尺,芦苇长13尺.第一章 勾股定理复习学案 一、勾股定理:_在RtABC中,C=90则有_知识运用(1)在RtABC中,C=90(1)若a=3,b=4,则c=;若b=8,c=17,则a=_;(2)等腰ABC中,AB=AC=17cm,BC=1

28、6cm,则BC边上的高AD=_。 图2图2(3)如图2:在一个高6米,长10米的楼梯表面铺地毯,则该地毯的长度至少是 米。(4)一根旗杆在离地面9 m处断裂,旗杆顶部落在离旗杆底部12 m的地面上,旗杆在折断之前高度为 。(5)一直角三角形两条边长分别是12和5,则第三边平方为 二、勾股定理逆定理_知识运用(1)、下列各组数中不能作为直角三角形的三边长的是( )A. 1.5,2,3; B. 7,24,25; C. 6,8,10; D. 9,12,15.(2)、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A. 钝角三角形; B. 锐角三角形; C. 直角三角形; D. 等腰三角

29、形. (3)在ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是。BA三、最短距离问题:主要运用的依据是BA(1)、如图1:有一长70,宽50,高50的长方体盒子,A点处有一只蚂蚁,想吃到B点处的食物,它爬行的最近距离是 厘米。 (2) 如图5,一个无盖的圆柱纸盒:高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃,要爬行的最短路程(取3)是( ) A.20cm; B.10cm; C.14cm; D.无法确定. 二,我掌握好了吗(1)如图,在四边形ABCD中,BAD =,DBC =,AD = 3,AB = 4,BC = 12,求CD; (2)已知,如图

30、,折叠长方形(四个角都是直角,对边相等)的一边AD使点D落在BC边的点F处,已知AB = 8cm,BC = 10 cm,求EC的长 (3)铁路上A,B两点相距25km,C,D为两村庄,DAAB于A,CBAB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?AADEBCAABCD(4) 如图,在ABC中,D 是BC上一点,若AB=10,BD=6,AD=8,AC=17,求ABC的面积. (5)在某一平地上,有一棵树高8米的大树,一棵树高3米的小树,两树之间相距12米。今一只小鸟在其中一棵树的树梢上,要飞

31、到另一棵树的树梢上,问它飞行的最短距离是多少?(画出草图然后解答)数怎么又不够用了(一)教学目标(一)教学知识点1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出理由.(二)能力训练要求1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操

32、作过程.2.判断一个数是否为有理数.教具准备有两个边长为1的正方形,剪刀.投影片两张:第一张:做一做(记作2.1.1 A);第二张:补充练习(记作2.1.1 B).教学过程讲授新课做一做:投影片2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?(3)b是有理数吗?师请大家先回忆一下勾股定理的内容.生在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.师在这个题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.生甲因为22=4,32=9,459,

33、所以b不可能是整数.生乙没有两个相同的分数相乘得5,故b不可能是分数.生丙因为没有一个整数或分数的平方为5,所以5不是有理数.师大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数无理数.关于无理数的发现是发现者付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊

34、人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.课堂练习(一)课本P25随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在RtABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.课时小结1.通过拼图活动,让学生感受有理数又不够用了,经历无理数产生的实际背景和引入的必要性.2.能判断

35、一个数是否为有理数.活动与探究下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB=2,BE=1,AB、BE是有理数.AD2=AB2+BD2=22+32=13,AC2112.AE2=AB2+BE2=22+12=5.AC、AD、AE既不是整数,也不是分数,所以不是有理数. 2、下面各正方形的边长不是有理数的是( )(A)面积为25的正方形 (B)面积为的正方形 (C)面积为27的正方形 (D)面积为1.44的正方形3、(1)若长方形的长、宽分别是12、9,那么它的对角线的长是有理数吗?

36、为什么? (2)若长方形的长、宽分别是7、5,那么它的对角线的长是有理数吗?为什么?4、下图中阴影部分是正方形,求出此正方形的面积。此正方形的边长是有理数吗?为什么? 5、下图是由36个边长为1的小正方形拼成的,连接小正方形中的点A、B、C、D、E、F得线段AB、BC、CD、DE、EF、FA,请说出这些线段中长度是有理数的是哪些?长度不是有理数的是哪些?6、式子x2=a,当a是什么数时,x一定不是有理数? 7、如图,RtABC的三边分别为a、b、c。 (1)根据所给a、b的值,求出c2的值。 a=1,b=2, c2 =, a=1,b= , c2 =, a=3,b=4, c2 =, a=,b=

37、, c2 =, a=5,b=6, c2 =, a=9,b=12, c2 =, a=,b=,c2 =, a=0.6,b=0.8, c2 =, (2)分析上述c2的结果,我们知道,c是整数的有,c是分数的有,c既不是整数又不是分数的有(填上序号)四、小结1、无理数产生的实际背景和引入的必要性;2、会用自己的语言说明一个数不是有理数;3、借助图形判断一条线段是否是有理数线段。数怎么又不够用了(二)教学目标:(一)教学知识点1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.教学重点:1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无

38、理数与有理数的区别,并能正确地进行判断.教学难点:1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学过程:.创设问题情境,引入新课师同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.讲授新课1.导入师请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.生因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.师大家能不能判断一下面积为2的正方形的边长a的大致范围呢?生因为a2大于1且a2小于4,所以a

39、大致为1点几.师很好.a肯定比1大而比2小,可以表示为1a2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4a1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.请一位同学把自己的探索过程整理一下,用表格的形式反映出来.生我的探索过程如下.边长a面积S1a21S41.4a1.51.96S2.251.41a1.421.9881S2.01641.414a1.4151.S2.

40、1.4142a1.41431.S2.师还可以继续下去吗?生可以.师请大家继续探索,并判断a是有限小数吗?生a=1.,还可以再继续进行,且a是一个无限不循环小数.师请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)生b=2.,还可以再继续进行,b也是一个无限不循环小数.2.无理数的定义请大家把下列各数表示成小数.3,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.生3=3.0,=0.8,=,生3,是有限小数,是无限循环小数.师上面这些数都是有理数,所以有理数总

41、可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像上面研究过的a2=2,b2=5中的a,b是无限不循环小数.无限不循环小数叫无理数(irrational number).除上面的a,b外,圆周率=3.也是一个无限不循环小数,0.(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.3.有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.4.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,0.(相邻两个1之间0的个数逐次加1).课堂练习(一)随

42、堂练习下列各数中,哪些是有理数?哪些是无理数?0.4583,18.(二)补充练习:、判断题(1)有理数与无理数的差都是有理数.(2)无限小数都是无理数.(3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.、下列各数中,哪些是有理数?哪些是无理数?0.351,3.14159,5.,1112(由相继的正整数组成).在下列每一个圈里,至少填入三个适当的数.课时小结1.用计算器进行无理数的估算.2.无理数的定义.3.判断一个数是无理数或有理数.探究与活动设面积为5的圆的半径为a.(1)a是有理数吗?说说你的理由.(2)估计a的值(精确到十分位,并利用计算器验证你的估计).(3)如果精确到百分

43、位呢?解:a2=5a2=5(1)a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.(2)估计a2.2.(3)a2.24.2.2平方根(一)学习目标:1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质.学习重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.学习难点:了解算术平方根的概念、性质.无理数的概念。有理数和无理数的区别若x2=a,则a叫x的平方,反过来x叫a的什么呢?4、下面请大家根据勾股定量,结合图形完成填空. 根据下图填

44、空x2=_y2=_z2=_w2=_请大家再分析一下,x,y,z,w中哪些是有理数?哪些是无理数?5、大家能不能把上图中的x,y,z,w表示出来呢?请大家仔细看书后回答.6、算术平方根的定义。学习过程:例1求下列各数的算术平方根:(1)900;(2)1;(3);(4)14.例2自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?归纳总结:负数的算术平方根是否为负数呢?若(2)2=4.则=2对吗?或者=2对吗?例题示范求下列各数的平方根:(1)64;(2);(3) 0.0004;(4);(5) 11(1)解:, (2

45、)解: (3)解: (4) 解: (5) 解:补充练习. 一、填空题1).若一个数的算术平方根是,则这个数是_.2).的算术平方根是_.3).正数_的平方为的算术平方根为_.4).(1.44)2的算术平方根为_.5).的算术平方根为_,=_二、求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2; (2)(3.9)2; (3)2.25; (4)2.课后作业1 下列说法正确的是 25的平方根是5;-36的平方根是-6;平方根等于0的数是0;64的平方根是82下列说法不正确的是( ) (A)0的平方根是0 (B)的平方根是 (C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大

46、于这个数的相反数3. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是( ) (A) a+1 (B) (C) a2+1 (D) 4.为何值,有意义?活动与探究1.一个正方形的面积变为原来的n倍时,它的边长变为原来的多少倍?2.一个正方形的面积为原来的100倍时,它的边长变为原来的多少倍?2.2平方根(二)学习目标:(一)教学知识点1.了解平方根的概念、开平方的概念.2.明确算术平方根与平方根的区别与联系.3.进一步明确平方与开方是互为逆运算.学习重点:1.了解平方根、开平方的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根3.了

47、解平方根与算术平方根的区别与联系.学习难点:1.平方根与算术平方根的区别与联系.2.负数没有平方根,即负数不能进行开平方运算的原因.预习.导学1、上节课我们学习了算术平方根的概念,性质.知道若一个正数x的平方等于a,即x2=a.则x叫a的算术平方根,记作x=,而且也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(2)2=4,则2叫4的什么根呢?下面我们就来讨论这个问题.2、.平方根、开平方的概念3、请大家先思考两个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?(2)平方等于的数有几个?平方等于0.64的数呢?4、根据上一节课的内容

48、,我们知道了是9的算术平方根,是的算术平方根,那么3,叫9、的什么根呢?请大家认真看书后回答.5、由平方根和算术平方根的定义。 6、平方根的性质,请大家思考以下问题.(1)一个正数有几个平方根.(2)0有几个平方根?(3)负数呢?7、什么叫开平方呢?8、平方根与算术平方根的联系与区别学习过程:例求下列各数的平方根.(1)64; (2); (3)0.0004; (4)(25)2; (5)11.想一想(1)()2等于多少?()2等于多少?(2)()2等于多少?(3)对于正数a,()2等于多少?课堂练习(一)随堂练习1.求下列各数的平方根1.44,0,8,441,196,1042.填空(1)、25的

49、平方根是_;(2)、 =_;(3)、()2=_.(4)、如果x2=a,(x为正数)那么x叫做_.(5)、| 2 |的算术平方根是_,0算术平方根是_. (6)、9的平方是_,9的平方根是_,9是_的一个平方根,(4)2的平方根是_.7)、平方根等于它本身的数是_,算术平方根等于它本身的数有_,作业:活动与探究1.对于任意数a,一定等于a吗?2.中的被开方数a在什么情况下有意义,()2等于什么?3.求下列各数的算术平方根:(1)900; (2)1; (3); (4)14 (4)14的算术平方根是补充作业一、填空题:1若一个数的算术平方根是,那么这个数是 ;2的算术平方根是 ;BCA3的算术平方根

50、是 ;BCA4若,则= 二、求下列各数的算术平方根: 36,15,0.64,三解答题1已知,求x+y+z的值2若x,y满足,求xy的值3求中的x4若的小数部分为a,的小数部分为b,求a+b的值5ABC的三边长分别为a,b,c,且a,b满足,求c的取值范围6.的小数部分为,的小数部分为,求的值.7.已知实数,满足若,为的两边,求第三边的取值范围;若,为的两边,第三边等于5,求的面积. 2.3立方根教学目标:(一)教学知识点1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.教学重点:立

51、方根的概念.教学难点:1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.教学方法:类比学习法.教学过程:.新课导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?.新课讲解1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?.若x的平方等于a,则x叫a的平方根,记作x=,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方

52、根,记作x=,读作x等于正、负三次根号a,简称x等于正、负根号a. 平方根与立方根的联系与区别.联系:(1)0的平方根、立方根都有一个是0.(2)平方根、立方根都是开方的结果.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“如果一个数的立方等于a,这个数就叫做a的立方根.”(2)个数不同:一个正数有两个平方根,一个正数有一个立方根;一个负数没有平方根,一个负数有一个立方根.(3)表示法不同正数a的平方根表示为,a的立方根表示为.(4)被开方数的取值范围不同中的被开方数a是非负数;中的被开方数可以是任何数.2.例题讲解例1求下列各数的立方根:(1)27;(2);(3)

53、0.216;(4)5.师请大家思考下列问题.表示a的立方根,则()3等于什么?等于什么?大家可以先举例后找规律.: ()3=a. 又a3是a的立方,所以a3的立方根就是a,所以=a.下面就这两个式子进行练习.例2求下列各式的值:(1);(2);(3);(4)()3课堂练习(一)随堂练习1.求下列各式的值:.2.一个正方体,它的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?解:设正方体的棱长是x厘米,得(二)补充练习1.求下列各数的立方根:0,1,6,0.0012.求下列各式的值:3.下列说法对不对?4没有立方根;1的立方根是1;的立方根是;5的立方根是;64的算术平方根是.议一

54、议1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?2.一个正方体的体积变为原来的n倍,它的棱长变为原来的多少倍?解:设原正方体的棱长为a,后来的正方体的棱长为b,得na3=b3b=.即后来的棱长变为原来的倍.课后作业(1)表示a的立方根,那么等于什么?呢?(2)与有何关系?意图:明晰 =a,=a。说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果=a,那么x就是a的立方根,即x=,所以=a, 同样,根据定义,是的a三次方,所以的立方根就是a, 即,=活动与

55、探究1.求下列各式中的x.(1) 8x3+27=0;(2)(x1)30.343=0;(3)81(x+1)4=16;(4)32x51=0.板书设计:教学反思:本节的内容最好在学生熟练掌握平方根的内容的前提下进行。这样就能让学生用类推的方法得出立方根的相关结论。回容易理解与掌握。从学生上课的反映来看,这节课应该是比较成功的。第四环节:尝试反馈,巩固练习内容:例1求下列各数的立方根:(1);(2) ; (3) ; (4);(5).解:(1)因为,所以的立方根是,即;(2)因为,所以的立方根是,即;(3)因为,所以的立方根是,即; (4)因为,所以的立方根是,即;(5)的立方根是.例2 求下列各式的值

56、:(1) (2) (3); (4)解:(1)=; (2)=; (3)=; (4)=9随堂练习1求下列各数的立方根: 2通过上面的计算结果,你发现了什么规律? 意图:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法例2则巩固立方根的计算,引导学生思考立方根的性质 效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:引导学生观察被开方数、根指数及运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现

57、的规律;若学生的讨论不够深入,可由教师补充得出结论2.4实数(一)教学目标:1、了解实数的意义,能对实数按要求进行分类。2、了解实数范围内,相反数、倒数、绝对值的意义。3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。重点、难点:重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。难点:用数轴上的点来表示无理数。教学过程:一、创设问题情景,引出实数的概念1、什么叫无理数,什么叫有理数,举例说明。2、把下列各数分别填入相应的集合内。,0,0.(相邻两个3之间7的个数逐次增加1)教师引导学生得出实数概述并板书:有理数和无理数统称实数(real

58、 number)。 教师点明:实数可分为有理数与无理数。二、议一议1、在实数概念基础上对实数进行不同分类。无理数与有理数一样,也有正负之分,如是正的,是负的。教师提出以下问题,让学生思考:(1)你能把,0,0.(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正有理数:负有理数:有理数:无理数:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。2、了解实数范围内相反数、倒数、绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么。在实数范围内,相

59、反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。例如,和是互为相反数,和互为倒数。,。三、想一想让学生思考以下问题1、a是一个实数,它的相反数为 ,绝对值为 ;2、如果,那么它的倒数为 。让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)四、议一议。探索用数轴上的点来表示无理数ACB11、复习勾股定理。如图在RtABC中AB= a,BC = b,AC = ACB1当a=1,b=1时,c的值是多少?2、出示投影(1)P45页图24,让学生探讨以下问题:(A)如图OA=OB,数轴上A点对应的数是多少?(B)如果将所有有理数都标

60、到数轴上,那么数轴上被填满了吗?让学生充分思考交流后,引导学生达成以下共识:(1)A点对应的数等于,它介于1与2之间。(2)如果将所有有理数都标到数轴上,数轴未被填满,在数轴上还可以表示无理数。(3)每一个褛都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。(4)一样地,在数轴上,右边的点比左边的点表示的数大。五、随堂练习1、判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数; (3)带根号的数都是无理数。2、求下列各数的相反数、倒数和绝对值:(1)3.8 (2) (3) (4) (5)3、在数轴上作出对应的点。六、小结1、实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论