版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知椭圆:的左,右焦点分别为,过的直线交椭圆于,两点,若,且的三边长,成等差数列,则的离心率为( )ABCD2已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,则球的表面积为( )AB
2、CD3地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )A截止到2015年中国累计装机容量达到峰值B10年来全球新增装机容量连年攀升C10年来中国新增装机容量平均超过D截止到2015年中国累计装机容量在全球累计装机容量中占比超过4函数的图象大致为( )ABCD5已知双曲线的
3、渐近线方程为,且其右焦点为,则双曲线的方程为( )ABCD6已知定点,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是( )A椭圆B双曲线C抛物线D圆7若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为( )AB2CD18为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度9已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为( )A2020B20l9C2018D201710正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为( )ABCD
4、11若复数,其中为虚数单位,则下列结论正确的是( )A的虚部为BC的共轭复数为D为纯虚数12已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13 “北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点远地点离地面的距离大约分别是,则“北斗三号”卫星运行轨道的离心率为_.14已知正项等比数列中,则_15设命题:,则:_16已知函数,则过原点且与曲线相切的直线方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1
5、7(12分)已知数列的前n项和为,且n、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.18(12分)如图,在四棱柱中,平面,底面ABCD满足BC,且()求证:平面;()求直线与平面所成角的正弦值.19(12分)在中,角的对边分别为,且满足.()求角的大小;()若的面积为,求和的值.20(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知a=4,.(1)求A的余弦值;(2)求ABC面积的最大值21(12分)已知等比数列中,是和的等差中项(1)求数列的通项公式;(2)记,求数列的前项和.22(10分)已知函数.(
6、1)若函数,求的极值;(2)证明:. (参考数据: )2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据等差数列的性质设出,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【题目详解】由已知,成等差数列,设,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,离心率.故选:C【答案点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.2、D【答案解析】由题意,得出六
7、棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【题目详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥,又由,所以, 在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【答案点睛】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.3、D【答案解析】先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作
8、出选择.【题目详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【答案点睛】本题考查条形图,考查基本分析求解能力,属基础题.4、A【答案
9、解析】确定函数在定义域内的单调性,计算时的函数值可排除三个选项【题目详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,排除C,只有A可满足故选:A.【答案点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项5、B【答案解析】试题分析:由题意得,所以,所求双曲线方程为考点:双曲线方程.6、B【答案解析】根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【题目详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而
10、是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【答案点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.7、C【答案解析】根据双曲线的解析式及离心率,可求得的值;得渐近线方程后,由点到直线距离公式即可求解.【题目详解】双曲线的离心率,则,解得,所以焦点坐标为,所以,则双曲线渐近线方程为,即,不妨取右焦点,则由点到直线距离公式可得,故选:C.【答案点睛】本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题.8、D【答案解析】通过变形,通过“左加右
11、减”即可得到答案.【题目详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【答案点睛】本题主要考查三角函数的平移变换,难度不大.9、B【答案解析】根据题意计算,计算,得到答案.【题目详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【答案点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.10、C【答案解析】如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.【题目详解】如图所示:在平面的投影为正方形的中心,故球心在上,故,设球半径为,则,解得,故.故选:.【答案点睛】
12、本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.11、D【答案解析】将复数整理为的形式,分别判断四个选项即可得到结果.【题目详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【答案点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.12、A【答案解析】根据题意,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【题目详解】已知与的图象有一个横坐标为的交点,则,若函数图象的纵坐标不变,横坐标变为原来的倍, 则,所以当时,在有且仅有5个零点, ,.故选:A.【答案点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数
13、问题,考查转化思想和计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【题目详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点远地点离地面的距离大约分别是,可得,解得,所以椭圆的离心率为.故答案为:.【答案点睛】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的关键,着重考查了推理与计算能力,属于基础题.14、【答案解析】利用等比数列的通项公式将已知两式作商,可得,再利用等比数列的性质可得,再利用等比数列的通项公式即可求解.【题
14、目详解】由,所以,解得.,所以,所以.故答案为:【答案点睛】本题考查了等比数列的通项公式以及等比中项,需熟记公式,属于基础题.15、,【答案解析】存在符号改任意符号,结论变相反.【题目详解】命题是特称命题,则为全称命题,故将“”改为“”,将“”改为“”,故:,.故答案为:,.【答案点睛】本题考查全(特)称命题. 对全(特)称命题进行否定的方法:(1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词;(2)否定结论:对于一般命题的否定只需直接否定结论即可16、【答案解析】设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程【题目详解】设切
15、点坐标为,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为【答案点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2)11202.【答案解析】(1)由n,成等差数列,可得,两式相减,由等比数列的定义可得是等比数列,可求数列的通项公式;(2)由(1)中的可求出,根据和求出数列,中的
16、公共项,分组求和,结合等比数列和等差数列的求和公式,可得答案.【题目详解】(1)证明:因为n,成等差数列,所以,所以.,得,所以.又当时,所以,所以,故数列是首项为2,公比为2的等比数列,所以,即.(2)根据(1)求解知,所以,所以数列是以1为首项,2为公差的等差数列.又因为,所以 .【答案点睛】本题考查等比数列的定义,考查分组求和,属于中档题.18、 () 证明见解析;()【答案解析】()证明,根据得到,得到证明.() 如图所示,分别以为轴建立空间直角坐标系,平面的法向量,计算向量夹角得到答案.【题目详解】() 平面,平面,故.,故,故.,故平面.()如图所示:分别以为轴建立空间直角坐标系,
17、则,.设平面的法向量,则,即,取得到,设直线与平面所成角为故.【答案点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.19、();(),.【答案解析】()运用正弦定理和二角和的正弦公式,化简,即可求出角的大小;()通过面积公式和 ,可以求出,这样用余弦定理可以求出,用余弦定理求出,根据同角的三角函数关系,可以求出,这样可以求出,最后利用二角差的余弦公式求出的值.【题目详解】()由正弦定理可知:,已知,所以,,所以有.(),由余弦定理可知:,.【答案点睛】本题考查了正弦定理、余弦定理、面积公式、二倍角公式、二角差的余弦公式以及同角的三角函数关系,考查了运算能力.20、(1
18、);(2)【答案解析】(1)根据正弦定理化简得到,故,得到答案.(2)计算,再利用面积公式计算得到答案.【题目详解】(1),则,即,故,故.(2),故,故.当时等号成立.,故,故ABC面积的最大值为.【答案点睛】本题考查了正弦定理,面积公式,均值不等式,意在考查学生的综合应用能力.21、(1)(2)【答案解析】(1)用等比数列的首项和公比分别表示出已知条件,解方程组即可求得公比,代入等比数列的通项公式即可求得结果;(2)把(1)中求得的结果代入bnanlog2an,求出bn,利用错位相减法求出Tn【题目详解】(1)设数列的公比为,由题意知:,即.,即.(2),.得.【答案点睛】本题考查等比数列的通项公式和等差中项的概念以及错位相减法求和,考查运算能力,属中档题22、(1)见解析;(1)见证明【答案解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(1)问题转化为证exx1xlnx10,根据xlnxx(x1),问题转化为只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年个人从事消防劳动合作协议书版B版
- 房屋建筑修建设计合同(2024版)2篇
- 2024年国际销售代理合同样本版B版
- 2024年专利权质权设立协议
- 江南大学《读写(1)》2021-2022学年第一学期期末试卷
- 佳木斯大学《幼儿游戏与指导》2021-2022学年第一学期期末试卷
- 二零二四年度蔬菜农场与批发市场配送合同2篇
- 2024年国际贸易英文协议模板版B版
- 暨南大学《中外民族音乐赏析》2021-2022学年第一学期期末试卷
- 暨南大学《审计理论与方法》2021-2022学年第一学期期末试卷
- 广州国际创新城南岸起步区控制性详细规划
- GB/T 18910.61-2012液晶显示器件第6-1部分:液晶显示器件测试方法光电参数
- GA/T 1145-2014警用约束叉
- GA 1800.3-2021电力系统治安反恐防范要求第3部分:水力发电企业
- 2023年小学三年级成语知识竞赛题
- 2023-瑞幸咖啡vi手册
- 《文献阅读》课件
- 呼和浩特市玉泉区国土空间总体规划(2021-2035年)
- 【人教版】政治必修四:《百舸争流的思想》课件
- IPD集成产品开发管理(学员版)课件
- 人教版五年级上学期科学5.14《认识太阳能热水器》课件
评论
0/150
提交评论