甘肃省武威市凉州区六坝乡中学2023学年高三第四次模拟考试数学试卷(含解析)_第1页
甘肃省武威市凉州区六坝乡中学2023学年高三第四次模拟考试数学试卷(含解析)_第2页
甘肃省武威市凉州区六坝乡中学2023学年高三第四次模拟考试数学试卷(含解析)_第3页
甘肃省武威市凉州区六坝乡中学2023学年高三第四次模拟考试数学试卷(含解析)_第4页
甘肃省武威市凉州区六坝乡中学2023学年高三第四次模拟考试数学试卷(含解析)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某四棱锥的三视图如图所示,该几何体的体积是( )A8BC4D2已知,则的值等于( )ABCD3已知集合,则集合( )ABCD4国务院发布关于进一步调整优化结构、提高教育经费使用

2、效益的意见中提出,要优先落实教育投入某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B年以来,国家财政性教育经费的支出占比例持续年保持在以上C从年至年,中国的总值最少增加万亿D从年到年,国家财政性教育经费的支出增长最多的年份是年5已知是函数的极大值点,则的取值范围是ABCD6若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )ABCD7偶函数关于点对称,当时,求( )ABCD8在复平面内,复数对应的点位于( )A第一象限B第二

3、象限C第三象限D第四象限9已知,则 ()ABCD10近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;可以估计不足的大学生使用主要玩游戏;可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为( )ABCD11数列an,满足对任意的nN+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列an的前100项的和S100=( )A132B2

4、99C68D9912是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数是定义在上的奇函数,且周期为,当时,则的值为_14在中,内角所对的边分别是.若,则_,面积的最大值为_.15在中,若,则 _16函数的定义域是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,且PA=AD,E, F分别是棱AB, PC的中点.求证:(1) EF /平面PAD;(2)平面PCE平面PCD18(12分)已知在中,角、的对边分别为,.(1)若

5、,求的值;(2)若,求的面积.19(12分)已知函数(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围20(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.21(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.22(10分)在中,、的对应边分别为、,已知,.(1)求;(2)设为中点,求的长.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据三视图知

6、,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积【题目详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,四棱锥的体积为.故选:D.【答案点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力属于中等题.2、A【答案解析】由余弦公式的二倍角可得,再由诱导公式有,所以【题目详解】由余弦公式的二倍角展开式有又故选:A【答案点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题3、D【答案解析】弄清集合B的含义,它的

7、元素x来自于集合A,且也是集合A的元素.【题目详解】因,所以,故,又, ,则,故集合.故选:D.【答案点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.4、C【答案解析】观察图表,判断四个选项是否正确【题目详解】由表易知、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误【答案点睛】本题考查统计图表,正确认识图表是解题基础5、B【答案解析】方法一:令,则,当,时,单调递减,时,且,即在上单调递增,时,且,即在上单调递减,是函数的极大值点,满足题意;当时,存在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,故选B方法二:依据极值

8、的定义,要使是函数的极大值点,须在的左侧附近,即;在的右侧附近,即易知,时,与相切于原点,所以根据与的图象关系,可得,故选B6、D【答案解析】求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【题目详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【答案点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.7

9、、D【答案解析】推导出函数是以为周期的周期函数,由此可得出,代值计算即可.【题目详解】由于偶函数的图象关于点对称,则,则,所以,函数是以为周期的周期函数,由于当时,则.故选:D.【答案点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.8、B【答案解析】化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.【题目详解】对应的点的坐标为在第二象限故选:B.【答案点睛】本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.9、B【答案解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【题目

10、详解】,本题正确选项:【答案点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力10、C【答案解析】根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断的正误;计算使用主要玩游戏的大学生所占的比例,可判断的正误;计算使用主要找人聊天的大学生所占的比例,可判断的正误.综合得出结论.【题目详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以正确;使用主要玩游戏的人数为,而调查的总人数为,故超过的大学生使用主要玩游戏,所以错误;使用主要找人聊天的大学生人数为,因为,所以正确.故选:C.【答案点睛】本题考查统计中相关命题真假的判断,计算出相

11、应的频数与频率是关键,考查数据处理能力,属于基础题.11、B【答案解析】由为定值,可得,则是以3为周期的数列,求出,即求.【题目详解】对任意的,均有为定值,故,是以3为周期的数列,故,.故选:.【答案点睛】本题考查周期数列求和,属于中档题.12、C【答案解析】求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.【题目详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【答案点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查

12、了两圆关于直线对称性的应用,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意可得:,周期为,可得,可求出,最后再求的值即可.【题目详解】解:函数是定义在上的奇函数,.由周期为,可知,.故答案为:.【答案点睛】本题主要考查函数的基本性质,属于基础题.14、1 【答案解析】由正弦定理,结合,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【题目详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1). 1 (2). 【答案点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型

13、.15、【答案解析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据, 得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.16、【答案解析】由,得,所以,所以原函数定义域为,故答案为.三、解答题:共

14、70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【答案解析】(1)取的中点构造平行四边形,得到,从而证出平面;(2)先证平面,再利用面面垂直的判定定理得到平面平面【题目详解】证明:(1)如图,取的中点,连接,是棱的中点,底面是矩形,且,又,分别是棱,的中点,且,且,四边形为平行四边形,又平面,平面,平面;(2),点是棱的中点,又,平面,平面,底面是矩形,平面,平面,且,平面,又平面,又平面,平面,且,平面,又平面,平面平面【答案点睛】本题主要考查线面平行的判定,面面垂直的判定,首选判定定理,是中档题18、(1)7(2)14【答案解析】(1)在中,可得 ,结合正弦

15、定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【题目详解】(1)在中,.(2),解得,.【答案点睛】本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.19、 (1)x=1 (2)证明见解析 (3) 【答案解析】(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;(2)转化思想,要证 ,即证 ,即证,构造函数进而求证;(3)不等式 对一切正实数恒成立,设,分类讨论进而求解【题目详解】解:(1)令,所以,当时,在上单调递增;当时,在单调递减;所以,所以的零点为(2)由题意, ,要证 ,即证,即证,令,则,

16、由(1)知,当且仅当时等号成立,所以,即,所以原不等式成立(3)不等式 对一切正实数恒成立,设,记,当时,即时,恒成立,故单调递增于是当时,又,故,当时,又,故,又当时,因此,当时,当,即时,设的两个不等实根分别为,又,于是,故当时,从而在单调递减;当时,此时,于是,即 舍去,综上,的取值范围是【答案点睛】(1)考查函数求导,根据导函数确定函数的单调性,零点;(2)考查转化思想,构造函数求极值;(3)考查分类讨论思想,函数的单调性,函数的求导;属于难题.20、(1)证明见解析;(2).【答案解析】(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可(2)直接求导可得,令,得或,故根据0

17、与的大小关系来进行分类讨论即可【题目详解】证明:(1)令,则.分析知,函数的增区间为,减区间为.所以当时,.所以,即,所以.所以当时,.解:(2)因为,所以.讨论:当时,此时函数在区间上单调递减.又,故此时函数仅有一个零点为0;当时,令,得,故函数的增区间为,减区间为,.又极大值,所以极小值.当时,有.又,此时,故当时,函数还有一个零点,不符合题意;当时,令得,故函数的增区间为,减区间为,.又极小值,所以极大值.若,则,得,所以,所以当且时,故此时函数还有一个零点,不符合题意.综上,所求实数的值为.【答案点睛】本题考查不等式的恒成立问题和函数的零点问题,本题的难点在于把导数化成因式分解的形式,如,进而分类讨论,本题属于难题21、(1),(2)【答案解析】(1)先由正弦定理,得到,进而可得,再由,即可得出结果;(2)先由余弦定理得,再根据题中数据,可得,从而可求出,得到,进而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论