非线性电路的分析方法_第1页
非线性电路的分析方法_第2页
非线性电路的分析方法_第3页
非线性电路的分析方法_第4页
非线性电路的分析方法_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、非线性电路的分析方法第1页,共39页,2022年,5月20日,3点44分,星期四6.1 概述 级数展开分析方法 )1e(IiKT/quScBE-= 折线分析法 线性时变电路分析法 休息1休息2第2页,共39页,2022年,5月20日,3点44分,星期四6.2 非线性元器件的特性描述 休息1休息21. 幂级数分析法 当PN结二极管的电压、电流值较小时,流过二极管的电流id(t)可写为: 如果加在二极管上的电压ud=UQ+Usmcosst,且Usm较小,UQ UT。流过二极管的电流为QUdmuDiDOiduS令, 。则利用id(t)可以写为:由二项式定理 :进一步展开。其中, 利用三角函数公式:可

2、以将id(t)表达为:以上分析进一步表明:单一频率的信号电压作用于非线性元件时,在电流中不仅含有输入信号的频率分量s,而且还含有各次谐波频率分量ns。第3页,共39页,2022年,5月20日,3点44分,星期四1. 幂级数分析法当两个信号电压 ud1=Udmlcoslt 和 ud2=Udm2cos 2t 同时作用在非线性元件时,根据以上的分析可得简化后的id(t)表达式为:利用三角函数的积化和差公式:可以推出id(t)中所含有的频率成份为:其中,(p,q=1,2,3.)。12输入电压信号的频谱电流id(t)的频谱131212222-12+12+212-2122+122-122+2122-21第

3、4页,共39页,2022年,5月20日,3点44分,星期四第四章 非线性电路,线性时变参数电路输入信号频谱输出电流信号频谱休息1休息2第5页,共39页,2022年,5月20日,3点44分,星期四us+-+-uoEBECVTCL2. 线性时变电路分析法 休息1休息2ic+ube-yiegmubeic+uce-UB(t)第6页,共39页,2022年,5月20日,3点44分,星期四us+-+-uoEBECVTCLUB(t)2. 线性时变电路分析法 休息1休息2uBEic第7页,共39页,2022年,5月20日,3点44分,星期四休息1休息2第8页,共39页,2022年,5月20日,3点44分,星期四

4、uoS(t)3 开关函数分析法休息1休息2+-udidididRLrdusuo+-+-开关频率oRLVDusuo+-+-返回继续idid第9页,共39页,2022年,5月20日,3点44分,星期四 相乘器 kuxuyuz输入信号频谱输出信号频谱4 乘法器电路分析休息1休息2第10页,共39页,2022年,5月20日,3点44分,星期四6.3 模拟乘法器6.3.1 模拟乘法器的基本概念6.3.2 差分对模拟乘法电路一、单差分对乘法电路二、双差分对模拟乘法电路三、具有射极反馈电阻的双差分对乘法电路四、单片集成模拟乘法器 第11页,共39页,2022年,5月20日,3点44分,星期四等各种技术领域

5、模拟乘法器可应用于:6.3.1 模拟相乘器的基本概念 模拟乘法器属于非线性单元电路,通常为集成组件。具有两个输入端(常称X输入和Y输入)和一个输出端(常称Z输出), 是一个三端口网络,电路符号如右图所示: uxuyuzXYZ 理想乘法器: uz(t)=kux(t)uy(t) 式中:k为增益系数或标度因子, 单位: ,k的数值与乘法器的电路参数有关。 或Z=kXY第12页,共39页,2022年,5月20日,3点44分,星期四 一、乘法器的工作象限 乘法器有四个工作区域,可由它的两个输入电压的极性确定。 XYXmax-Xmax Ymax-Ymax 输入电压可能有四种极性组合: X Y Z (+)

6、(-) = (-) 第象限 (-) (-) = (+) 第象限 (-) (+) = (-) 第象限 (+) (+) = (+) 第象限(1)两个输入信号只能为单极性的信号的乘法器为“单象限乘法器”;(2)一个输入信号可以两种极性,另一个只能是一种单极性的乘法器为“二象限乘法器”; (3)两个输入信号都可以正、负两种极性的乘法器为“四象限乘法器”。 第13页,共39页,2022年,5月20日,3点44分,星期四(3)当X=Y或X=-Y,Z=KX2或Z=-KX2, 输出与输入是平方律特性(非线性)。XYX=YX=-Y 2、乘法器的线性和非线性 理想乘法器属于非线性器件还是线性器件取决于两个输入电压

7、的性质。 一般: 当X或Y为一恒定直流电压时,Z=KCY=KY,乘法器为一个线性放大器。 当X和Y均不定时,乘法器属于非线性器件。 (2)当X=C(常数),Z=KCY=KY,Z与Y成正比(线性关系)XYC0C0 二、理想乘法器的基本性质 1、乘法器的静态特性(1) 第14页,共39页,2022年,5月20日,3点44分,星期四 在集成模拟乘法器中,实现模拟相乘的方法有多种,如可变跨导相乘法、霍尔效应法、对数反对数相乘法、四分之一平方相乘法以及时间相乘分割法等。 目前广泛应用的通用型单片集成模拟乘法器主要有两类。 一类是以对数反对数电路为基本单元构成的对数式乘法器,典型产品是TD4026。对数式

8、乘法器的运算精度很高,但价格昂贵,主要用在对于精度要求很高的场合。 另一类是以变跨导电路为基本单元构成的变跨导乘法器,这类乘法器因为电路简单、易于集成设计、具有较高的温度稳定性和一定,芯片的速度较高,所以得到广泛应用。第15页,共39页,2022年,5月20日,3点44分,星期四 基本电路结构是一个恒流源差分放大电路,不同之处在于恒流源管VT3的基极输入了信号uy(t),即恒流源电流io受uy(t)控制。 模拟相乘器的基本单元电路 1、二象限变跨导模拟相乘器ECRCRCVT3VT2VT1uyuxREube1ube2ic2ic1ioube3uo-UEE其中第16页,共39页,2022年,5月20

9、日,3点44分,星期四由图可知: ux = ube1 - ube2 根据晶体三极管特性,VT1、VT2集电极电流为: VT3的集电极电流可表示为:可得:同理可得: 式中, 为双曲正切函数。 ic1、ic2ic1ic2Io 0-3321-1-2第17页,共39页,2022年,5月20日,3点44分,星期四(1)当为小信号Uxm UT 时, 差分输出电流iod为:差分放大电路的跨导gm为: 恒流源电流io为: 由于uy控制了差分电路的跨导gm,使输出uo中含有uxuy相乘项,故称为变跨导乘法器。 变跨导乘法器输出电压uo中存在非相乘项。第18页,共39页,2022年,5月20日,3点44分,星期四

10、(2)当为中等大小信号UT Uxm 100mv 时,VT1和VT2接近于开关状态,因此,该电路可作为高速开关、限幅放大器等电路。双曲正切函数可近似用双向开关函数 替换。第19页,共39页,2022年,5月20日,3点44分,星期四RcRcEcVT1VT2VT3VT4VT5VT6Io 基本电路结构 VT1,VT2,VT3,VT4为双平衡的差分对,VT5,VT6差分对分别作为VT1,VT2和VT3,VT4双差分对的射极恒流源。 二、双差分对乘法器(吉尔伯特(Gilbert)乘法器) 是一种四象限乘法器,也是大多数集成乘法器的基础电路。VT1VT2VT3VT4VT5VT6第20页,共39页,2022

11、年,5月20日,3点44分,星期四RcRcVccVT1VT2VT3 VT4VT5VT6Io 工作原理分析 根据差分电路的工作原理: 又因,输出电压:+ux-+uy-+uo-iAiBi2i1i3i4i5i6当输入为小信号并满足:第21页,共39页,2022年,5月20日,3点44分,星期四 而标度因子 吉尔伯特乘法器单元电路,只有当输入信号较小时,具有较理想的相乘作用,ux,uy 均可取正、负两极性,故为四象限乘法器电路,但因其线性范围小,不能满足实际应用的需要。 第22页,共39页,2022年,5月20日,3点44分,星期四IoyIoyRcRcEcVT1VT2VT3 VT4VT5VT6RyVT

12、5VT6Ry三、具有射极负反馈电阻的双差分对乘法器 使用射极负反馈电路Ry,可扩展uy的线性范围,Ry取值应远大于晶体管T5 ,T6 的发射极电阻,即有 静态时,i5=i6=IoY 。当加入信号uy时,流过Ry的电流为: iAiB+ux-+uo-iY有如果uxUT ,i5i6+uy-第23页,共39页,2022年,5月20日,3点44分,星期四RcRcEcVT1VT2VT3 VT4VT5VT6IoyIoyRyVD1VD2VT7VT8R1RxIoxIox线性化吉尔伯特乘法器电路 具有射极负反馈电阻的双平衡Gilbert乘法器,尽管扩大了对输入信号uy的线性动态范围,但对输入信号ux的线性动态范围

13、仍较小,在此基础上需作进一步改进,下图为改进后的线性双平衡模拟乘法器的原理电路,其中VD1,VD2,VT7,VT8 构成一个反双曲线正切函数电路。 uxuxuyuoVD1VD2VT7VT8R1RxIoxIox第24页,共39页,2022年,5月20日,3点44分,星期四RcRcEcVT1VT2VT3 VT4VT5VT6IoyIoyRyVD1VD2VT7VT8R1RxIoxIoxuxuyux工作原理分析: i7ixi8iyiAiBVT7,VT8,Rx,Iox构成线性电压电流变换器。 有 uo 而 为VD1与VD2上的电压差,即: 利用数学关系: , 则上式可写成:(1)代入(2)可得:其中标度因

14、子: 可见大大扩展了电路对ux和uy的线性动态范围,改变电阻Rx或Iox可很方便地改变相乘器的增益。 +UD1-+UD2-iD1iD2第25页,共39页,2022年,5月20日,3点44分,星期四VT5VT6RyRcRcEcVT1VT2VT3 VT4VT5VT6VT7VT8VDRyR5-EEVT7VT8VD四、单片集成模拟乘法器及其典型应用 一、MC1496/MC1596及其应用uxuy1、 内部电路结构 与具有射极负反馈的双平衡Gilbert 相乘器单元电路比较,电路基本相同,仅恒流源用晶体管VT7,VT8代替,二极 管VD与500 电阻构成VT7,VT8的偏置电路。 反偏电阻Ry外接在引脚、两端,可展宽uy输入信号的动态范围,并可调整标度因子K。2、外接元件参数的计算iy+uy- 负反馈电阻Ry且应满足|iy|0VZ第36页,共39页,2022年,5月20日,3点44分,星期四3、 实用除法运算电路 电路中C为频率补偿电容第37页,共39页,20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论