版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数在上取得最小值时,的值为( )A0BCD2已知集合,在集合内随机取一个元素,则这个元素属于集合的概率为( )
2、ABCD3已知函数,其定义域是,则下列说法正确的是()A有最大值,无最小值B有最大值,最小值C有最大值,无最小值D无最大值,最小值4下列选项中,说法正确的是( )A命题“”的否定是“”B命题“为真”是命题“为真”的充分不必要条件C命题“若,则”是假命题D命题“在中,若,则”的逆否命题为真命题5如图,在空间四边形ABCD中,设E,F分别是BC,CD的中点,则+(-)等于ABCD6已知抛物线(是正常数)上有两点、,焦点,甲:;乙:;丙:;丁:.以上是“直线经过焦点”的充要条件有几个()ABCD7已知双曲线的离心率为,焦点是,则双曲线方程为( )ABCD8若复数满足,则在复平面内,对应的点的坐标是(
3、 )ABCD9已知,则下列结论正确的是()ABCD10设,则的值为( )AB1C0D-111已知角的终边经过点,则的值等于( )ABCD12已知是四个互不相等的正数,满足且,则下列选项正确的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若C9x=14设是定义在上的周期为2的函数,当时,则_15已知函数的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.则的解析式为_16根据所示的伪代码,若输入的的值为-1,则输出的结果为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)判断函数的奇偶性,并证明你的结论;(2)
4、求满足不等式的实数的取值范围.18(12分)已知,且满足.(1)求;(2)若,求的取值范围.19(12分)已知函数,曲线在处的切线方程为.(1)求实数的值;(2)求函数在的最值.20(12分)随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分与省一本线对比表:年份20142015201620172018年份代码12345省一本线505500525500530录取平均分533534566547580录取平均分与省一本线分差y2834414750(1)根据上表数据可知,y与t之间存在线性相关关系,求y关于t的线性回归方程;(2)据以往数据可知,该大
5、学每年的录取分数X服从正态分布,其中为当年该大学的录取平均分,假设2019年该省一本线为520分,李华2019年高考考了569分,他很喜欢这所大学,想第一志愿填报,请利用概率与统计知识,给李华一个合理的建议.(第一志愿录取可能性低于,则建议谨慎报考)参考公式:,.参考数据:,.21(12分)对某种书籍的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.表中.为了预测印刷20千册时每册的成本费,建立了两个回归模型:.(1)根据散点图,拟认为选择哪个模型预测更可靠?(只选出模型即可)(2)根据所给数据和(1)中的模型选择,求关于的回归方程,并预测印刷20千册时每册
6、的成本费.附:对于一组数据,其回归方程中斜率和截距的最小二乘估计公式分别为:,.22(10分)在平面直角坐标系中,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.(1)求曲线的参数方程;(2)过原点且关于轴对称的两条直线与分别交曲线于和,且点在第一象限,当四边形周长最大时,求直线的普通方程.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据三角函数的单调性分析求解即可.【详解】当时, .根据正弦函数的性质可知,当,即时, 取得最小值.
7、故选:D【点睛】本题主要考查了三角函数的最值问题,属于基础题.2、D【解析】利用线性规划可得所在区域三角形的面积,求得圆与三角形的公共面积,利用几何概型概率公式可得结果.【详解】表示如图所示的三角形,求得,点到直线的距离为,所以,既在三角形内又在圆内的点的轨迹是如图所示阴影部分的面积,其面积等于四分之三圆面积与等腰直角三角形的面积和,即为,所以在集合内随机取一个元素,则这个元素属于集合的概率为,故选D.【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还
8、有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.3、A【解析】先化简函数,再根据反比例函数单调性确定函数最值取法【详解】因为函数,所以在上单调递减,则在处取得最大值,最大值为,取不到函数值,即最小值取不到.故选A.【点睛】本题考查反比例函数单调性以及利用函数单调性求最值,考查分析判断求解能力,属基础题.4、C【解析】对于A,命题“”的否定是“”,故错误;对于B,命题“为真”是命题“为真”的必要不充分条件,故错误;对于C,命题“若
9、,则”在时,不一定成立,故是假命题,故正确;对于D,“在中,若,则或”为假命题,故其逆否命题也为假命题,故错误;故选C.5、C【解析】由向量的线性运算的法则计算【详解】-,+(-)故选C【点睛】本题考查空间向量的线性运算,掌握线性运算的法则是解题基础6、B【解析】设直线的方程为,将直线的方程与抛物线的方程联立,利用韦达定理验证四个选项结论成立时,实数的值,可以得出“直线经过焦点”的充要条件的个数.【详解】设直线的方程为,则直线交轴于点,且抛物线的焦点的坐标为.将直线的方程与抛物线的方程联立,消去得,由韦达定理得,.对于甲条件,得,甲条件是“直线经过焦点”的必要不充分条件;对于乙条件,得,此时,
10、直线过抛物线的焦点,乙条件是“直线经过焦点”的充要条件;对于丙条件,即,解得或,所以,丙条件是“直线经过焦点”的必要不充分条件;对于丁条件,化简得,得,所以,丁条件是“直线经过焦点”的必要不充分条件.综上所述,正确的结论只有个,故选B.【点睛】本题考查抛物线的几何性质,以及直线与抛物线的综合问题,同时也考查了充分必要条件的判定,解题时要假设直线的方程,并将直线方程与抛物线方程联立,利用韦达定理求解,考查运算求解能力与逻辑推理能力,属于中等题.7、A【解析】由题意e=2,c=4,由e=,可解得a=2,又b2=c2a2,解得b2=12所以双曲线的方程为故答案为 故答案选A.8、C【解析】试题分析:
11、由,可得,z对应的点的坐标为(4,2),故选C考点:考查了复数的运算和复数与复平面内点的对应关系点评:解本题的关键是根据复数的除法运算求出复数z,然后利用复数z所对应的点的横坐标和纵坐标分别为为复数的实部和虚部,得出对应点的坐标9、B【解析】根据指数函数、对数函数的单调性分别求得的范围,利用临界值可比较出大小关系.【详解】;且本题正确选项:【点睛】本题考查利用指数函数、对数函数的单调性比较大小的问题,关键是能够通过临界值来进行区分.10、C【解析】首先采用赋值法,令,代入求值,通分后即得结果.【详解】令,, , .故选:C【点睛】本题考查二项式定理和二项式系数的性质,涉及系数和的时候可以采用赋
12、值法求和,本题意在考查化归转化和计算求解能力,属于中档题型.11、A【解析】由三角函数的定义可求出的值.【详解】由三角函数的定义可得,故选A.【点睛】本题考查三角函数的定义,解题的关键在于三角函数的定义进行计算,考查计算能力,属于基础题.12、D【解析】采用特殊值法,结合已知条件,逐项判断,即可求得答案.【详解】A取,则它们满足且,但是:,故此时有,选项A错误;B取,则它们满足且,但是:,故此时有,选项B错误;C取,故此时有,选项C错误综上所述,只有D符合题意故选:D【点睛】本题解题关键是掌握不等式的基础知识和灵活使用特殊值法,考查了分析能力和计算能力,属于基础题.二、填空题:本题共4小题,每
13、小题5分,共20分。13、3或4【解析】结合组合数公式结合性质进行求解即可【详解】由组合数的公式和性质得x2x3,或x+2x39,得x3或x4,经检验x3或x4都成立,故答案为:3或4.【点睛】本题主要考查组合数公式的计算,结合组合数的性质建立方程关系是解决本题的关键14、【解析】试题分析:考点:1.函数的性质;2.周期函数.15、【解析】根据函数周期为,求出,再由图象的最低点,得到振幅,及.【详解】因为图象与两个交点之间的距离为,所以,所以,由于图象的最低点,则,所以,当时,因为,所以,故填:.【点睛】本题考查正弦型函数的图象与性质,考查数形结合思想的应用,注意这一条件限制,从面得到值的唯一
14、性.16、【解析】通过读条件语句,该程序是分段函数,代入即可得到答案.【详解】根据伪代码,可知,当时,故答案为.【点睛】本题主要考查条件程序框图的理解,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)为奇函数;证明见解析(2)【解析】(1)显然,再找到与的关系即可;(2)由可得,进而求解即可.【详解】(1)是奇函数;证明:因为,所以.所以为奇函数(2)解:由不等式,得,整理得,所以,即【点睛】本题考查函数奇偶性的证明,考查解含指数的不等式,考查运算能力.18、(1);(2).【解析】分析:(1)利用复数模的定义、互为共轭复数的意义及复数相等的定义即可解出;(
15、2)利用复数模的计算公式即可证明详解:(1)设,则 由得 利用复数相等的定义可得,解得或 或 (2)当时, 当时,| 综上可得:.点睛:熟练掌握复数模的定义、互为共轭复数的意义及复数相等的定义是解题的关键19、(1);(2),【解析】(1),可得到,即可求出的值;(2)由可判断的单调性,从而可求出函数在的最值.【详解】(1),则,(2)的定义域为,令,则,当时,单调递减;当时,单调递增, ,且,【点睛】本题考查了导数的几何意义,考查了函数的单调性的应用,考查了学生的计算能力,属于基础题.20、(1);(2)建议李华第一志愿谨慎报考该大学.【解析】(1)由表中的数据代入公式,计算出和,即可得到关
16、于 的线性回归方程;(2)结合(1)计算出2019年录取平均分,再根据该大学每年的录取分数X服从正态分布,由正态分布的性质可计算出李华被录取的概率,由此得到结论【详解】(1)由题知:,所以得:故所求回归方程为: ;(2)由(1)知:当时,故该大学2019年的录取平均分为577.1分.又因为 所以李华被录取的概率:故建议李华第一志愿谨慎报考该大学.【点睛】本题考查线性回归方程以及正态分布,属于中档题21、(1)模型更可靠.(2),1.6【解析】分析: (1)根据散点图的形状得到选择模型更可靠.(2) 令,则建立关于的线性回归方程,求得关于的线性回归方程为,再求出求关于的回归方程,令x=20,求出
17、的值,得到印刷20千册时每册的成本费.详解:(1)由散点图可以判断,模型更可靠.(2)令,则建立关于的线性回归方程,则,关于的线性回归方程为,因此,关于的回归方程为当时,该书每册的成本费元.点睛:(1)本题主要考查线性回归方程的求法,考查非线性回归方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)建立非线性回归模型的基本步骤:确定研究对象,明确哪个是解释变量,哪个是预报变量;画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(是否存在非线性关系);由经验确定非线性回归方程的类型(如我们观察到数据呈非线性关系,一般选用反比例函数、指数函数、对数函数模型等);通过换元,将非线性回归方程模型转化为线性回归方程模型;按照公式计算线性回归方程中的参数(如最小二乘法),得到线性回归方程;消去新元,得到非线性回归方程;得出结果后分析残
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国视频检测控制器市场调查研究报告
- 2024年中国石材软磨片市场调查研究报告
- 2024年中国水晶浮雕直木笔筒市场调查研究报告
- 2024至2030年棉籽项目投资价值分析报告
- 2024年中国工业锅炉市场调查研究报告
- 2024至2030年旋风式二级回收装置项目投资价值分析报告
- 2024至2030年数控线切割机床项目投资价值分析报告
- 2024至2030年抱压式液压阀门测试机项目投资价值分析报告
- 2024至2030年安瓿检漏灭菌柜项目投资价值分析报告
- 2025至2031年中国手工珠花行业投资前景及策略咨询研究报告
- 阅读理解(专项训练)-2024-2025学年湘少版英语六年级上册
- 民用无人驾驶航空器产品标识要求
- 中国音乐史与名作赏析智慧树知到期末考试答案章节答案2024年山东师范大学
- 伤口护理小组工作总结共34张课件
- 小学科学教育科学四年级上册运动和力《运动与摩擦力》说课稿修
- 区域地质及矿区地质图清绘规程
- 10套深蓝色商务医院科室组织架构PPT图表合集
- DB44∕T 1784-2015 木本园林植物修剪技术规程
- 青年心理学第六讲(人际关系与沟通)
- 核医学科PDCA案例
- ABB断路器参数调试讲义
评论
0/150
提交评论