福建省莆田一中等三校中学2023学年高三适应性调研考试数学试题(含解析)_第1页
福建省莆田一中等三校中学2023学年高三适应性调研考试数学试题(含解析)_第2页
福建省莆田一中等三校中学2023学年高三适应性调研考试数学试题(含解析)_第3页
福建省莆田一中等三校中学2023学年高三适应性调研考试数学试题(含解析)_第4页
福建省莆田一中等三校中学2023学年高三适应性调研考试数学试题(含解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合A,则集合( )ABCD2已知集合A=x|y=lg(4x2),B=y|y=3x,x0时,AB=( )Ax|x2 Bx|1x2 Cx|1x2 D3给定下列四个命题:若一个平面内的两

2、条直线与另一个平面都平行,则这两个平面相互平行;若一个平面经过另一个平面的垂线,则这两个平面相互垂直;垂直于同一直线的两条直线相互平行;若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是( )A和 B和 C和 D和4抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )ABCD5已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )ABCD6周易是我国古代典籍,用“卦”描述了天地世间万象变化如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个

3、阳爻,“”表示一个阴爻)若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为( )ABCD7如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为 ( )ABCD8在平面直角坐标系中,已知是圆上两个动点,且满足,设到直线的距离之和的最大值为,若数列的前项和恒成立,则实数的取值范围是( )ABCD9甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )A8B7C6D510已知向量,则( )ABC()D( )11若函数的图象过点,则它的一条对称轴方程可能是(

4、 )ABCD12很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设为数列的前项和,若,则_14四边形中,则的最小值是_.15已知复数(为虚数单位),则的共轭复数是_,_16已知全集为R,集合,则_.三、解答题:共70分。解答应

5、写出文字说明、证明过程或演算步骤。17(12分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.18(12分)已知函数f(x)axlnx(aR).(1)若a2时,求函数f(x)的单调区间;(2)设g(x)f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.19(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.

6、中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?20(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E(1)求曲线E的方程;(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当

7、线段AB的长度最小时,求s的值21(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.22(10分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证: 2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共

8、60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】化简集合,,按交集定义,即可求解.【题目详解】集合,则.故选:A.【答案点睛】本题考查集合间的运算,属于基础题.2、B【答案解析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x20,解得:-2x2,集合A=x|-2x2,由集合B中的函数考点:交集及其运算3、D【答案解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【题目详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故错误;由平面与平面垂直的判定可知正确;空间中垂直于同一条直线的两条直线还可以相交或者异

9、面,故错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故正确综上,真命题是.故选:D【答案点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题4、A【答案解析】首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【题目详解】样本空间样本点为个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1_ _,_1_,_ _1剩下2个空位可是0或1,这三种排列的所

10、有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个故不同的样本点数为8个,.故选:A【答案点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题5、D【答案解析】将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,是增函数;当时,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【题目详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,是增函数;当时,是减函数.因此.设,若在无解,则在

11、上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【答案点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题6、B【答案解析】基本事件总数为个,都恰有两个阳爻包含的基本事件个数为个,由此求出概率.【题目详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),

12、(巽,乾),(离,兑),(离,乾),(兑,乾)共个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共个,所以,所求的概率.故选:B.【答案点睛】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题7、A【答案解析】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值 ,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求

13、最值。8、B【答案解析】由于到直线的距离和等于中点到此直线距离的二倍,所以只需求中点到此直线距离的最大值即可。再得到中点的轨迹是圆,再通过此圆的圆心到直线距离,半径和中点到此直线距离的最大值的关系可以求出。再通过裂项的方法求的前项和,即可通过不等式来求解的取值范围.【题目详解】由,得,.设线段的中点,则,在圆上,到直线的距离之和等于点到该直线的距离的两倍,点到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆的圆心到直线的距离为,.故选:【答案点睛】本题考查了向量数量积,点到直线的距离,数列求和等知识,是一道不错的综合题.9、B【答案解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(

14、丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B. 10、D【答案解析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【题目详解】向量(1,2),(3,1),和的坐标对应不成比例,故、不平行,故排除A;显然,3+20,故、不垂直,故排除B;(2,1),显然,和的坐标对应不成比例,故和不平行,故排除C;()2+20,故 (),故D正确,故选:D.【答案点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质

15、,属于基础题.11、B【答案解析】把已知点坐标代入求出,然后验证各选项【题目详解】由题意,或,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,即是对称轴故选:B【答案点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键12、B【答案解析】根据程序框图列举出程序的每一步,即可得出输出结果.【题目详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【答案点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于

16、基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】当时,由,解得,当时,两式相减可得,即,可得数列是等比数列再求通项公式.【题目详解】当时,即,当时,两式相减可得,即,即,故数列是以为首项,为公比的等比数列,所以.故答案为:【答案点睛】本题考查数列的前项和与通项公式的关系,还考查运算求解能力以及化归与转化思想,属于基础题.14、【答案解析】在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.【题目详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.【答案点睛】本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属

17、于中档题15、 【答案解析】直接利用复数的乘法运算化简,从而得到复数的共轭复数和的模【题目详解】,则复数的共轭复数为,且.故答案为:;.【答案点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题16、【答案解析】先化简集合A,再求AB得解.【题目详解】由题得A=0,1,所以AB=-1,0,1.故答案为-1,0,1【答案点睛】本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1) (2)【答案解析】(1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(

18、2)由为假,为真,知一真一假;分类讨论列不等式组可解.【题目详解】(1)依题意,为真,则无解,即无解;令,则,故当时,单调递增,当, 单调递减,作出函数图象如下所示,观察可知,即;(2)若为真,则,解得;由为假,为真,知一真一假;若真假,则实数满足,则;若假真,则实数满足,无解;综上所述,实数的取值范围为.【答案点睛】本题考查根据全(特)称命题的真假求参数的问题.其思路:与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围18、(1)单调递减

19、区间为(0,1),单调递增区间为(1,+)(2)(3,2e【答案解析】(1)当a2时,求出,求解,即可得出结论; (2)函数在上有两个零点等价于a2x在上有两解,构造函数,利用导数,可分析求得实数a的取值范围.【题目详解】(1)当a2时,定义域为,则,令,解得x1,或x1(舍去),所以当时,单调递减;当时,单调递增;故函数的单调递减区间为,单调递增区间为,(2)设,函数g(x)在上有两个零点等价于在上有两解令,则,令,显然,在区间上单调递增,又,所以当时,有,即,当时,有,即,所以在区间上单调递减,在区间上单调递增,时,取得极小值,也是最小值,即,由方程在上有两解及,可得实数a的取值范围是.【

20、答案点睛】本题考查了利用导数研究函数的单调性极值与最值、等价转化思想以及数形结合思想,考查逻辑推理、数学计算能力,属于中档题.19、每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【答案解析】设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【题目详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【答案点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.20、(1),(2)【答案解析】根据题意设,可得PF的方程,根据距离即可求出;点Q处的切线的斜率存在,由对称性不妨设,根据导数的几何意义和斜率公式,求,并构造函数,利用导数求出函数的最值【题目详解】因为抛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论