湖北竹溪县重点达标名校2023学年毕业升学考试模拟卷数学卷含答案解析_第1页
湖北竹溪县重点达标名校2023学年毕业升学考试模拟卷数学卷含答案解析_第2页
湖北竹溪县重点达标名校2023学年毕业升学考试模拟卷数学卷含答案解析_第3页
湖北竹溪县重点达标名校2023学年毕业升学考试模拟卷数学卷含答案解析_第4页
湖北竹溪县重点达标名校2023学年毕业升学考试模拟卷数学卷含答案解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、湖北竹溪县重点达标名校2023学年毕业升学考试模拟卷数学卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)13的相反数是( )ABCD2在数轴上表示不等式组的解集,正确的是(

2、)ABCD3如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BEDF的是()AAECFBBEDFCEBFFDEDBEDBFD4如图,A,B是半径为1的O上两点,且OAOB,点P从点A出发,在O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()ABC或D或5一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系下列叙述错误的是()AAB两地相距1000千米B

3、两车出发后3小时相遇C动车的速度为D普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地6如图,在RtABC中,BAC90,ABAC,ADBC,垂足为D、E,F分别是CD,AD上的点,且CEAF.如果AED62,那么DBF的度数为()A62B38C28D267如图,AB是O的弦,半径OCAB 于D,若CD=2,O的半径为5,那么AB的长为()A3B4C6D88我们知道:四边形具有不稳定性如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D处,则点C的对应点C的坐标为()A(

4、,2)B(4,1)C(4,)D(4,)9(2011雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )A(3,4) B(3,4)C(4,3) D(3,4)10如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个11下面计算中,正确的是()A(a+b)2=a2+b2 B3a+4a=7a2C(ab)3=ab3 Da2a5=a712我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体如图

5、所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在33的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_.14如图,已知点A(a,b),0是原点,OA=OA1,OAOA1,则点A1的坐标是 15对于二次函数yx24x+4,当自变量x满足ax3时,函数值y的取值范围为0y1,则a的取值范围为_16如图,在RtAOB中,AOB=90,OA=2,OB=1,将RtAOB绕点O顺时针旋转90后得到RtFOE,将线

6、段EF绕点E逆时针旋转90后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是_17函数y=+中,自变量x的取值范围是_18矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分AEF的面积等于_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在ABC,AB=AC,以AB为直径的O分别交AC、BC于点D、E,点F在AC的延长线上,且CBF=12(1)求证:直线BF是O的切线;(2)若AB=5,sinCBF=5520(6分)计算:.21(6分)如

7、图1,在四边形ABCD中,AB=ADB+ADC=180,点E,F分别在四边形ABCD的边BC,CD上,EAF=BAD,连接EF,试猜想EF,BE,DF之间的数量关系.图1 图2 图3(1)思路梳理将ABE绕点A逆时针旋转至ADG,使AB与AD重合.由B+ADC=180,得FDG=180,即点F,D,G三点共线. 易证AFG ,故EF,BE,DF之间的数量关系为 ;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,EAF=BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在ABC中,BAC=90,A

8、B=AC,点D,E均在边BC上,且DAE=45. 若BD=1,EC=2,则DE的长为 .22(8分)如图,已知点A,C在EF上,ADBC,DEBF,AECF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AECF除外)23(8分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元分别求每台型, 型挖掘机一小

9、时挖土多少立方米?若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?24(10分)观察猜想:在RtABC中,BAC=90,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90,点D落在点E处,如图所示,则线段CE和线段BD的数量关系是 ,位置关系是 探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图中画出图形,并证明你的判断拓展延伸:如图,BAC90,若ABAC,ACB=45,AC=,其他条件不变,过点D作

10、DFAD交CE于点F,请直接写出线段CF长度的最大值25(10分)如图,ABC是O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形(1)求证:AC=CE;(2)求证:BC2AC2=ABAC;(1)已知O的半径为1若=,求BC的长;当为何值时,ABAC的值最大?26(12分)如图1,菱形ABCD,AB=4,ADC=120o,连接对角线AC、BD交于点O, (1)如图2,将AOD沿DB平移,使点D与点O重合,求平移后的ABO与菱形ABCD重合部分的面积.(2)如图3,将ABO绕点O逆时针旋转交AB于点E,交BC于点F,求证:BE+BF=2,求出四边形OEBF的面积.

11、27(12分)如图,反比例函数y=(x0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2过点B作CBOA,交x轴于点C,求点C的坐标2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【答案解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1【题目详解】根据相反数的定义可得:3的相反数是3.故选D.【答案点睛】本题考查相反数,题目简单,熟记定义是关键.2、C【答案解析】

12、解不等式组,再将解集在数轴上正确表示出来即可【题目详解】解1x0得x1,解2x40得x2,所以不等式的解集为1x2,故选C.【答案点睛】本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.3、B【答案解析】由四边形ABCD是平行四边形,可得AD/BC,AD=BC,然后由AE=CF,EBF=FDE,BED=BFD均可判定四边形BFDE是平行四边形,则可证得BE/DF,利用排除法即可求得答案【题目详解】四边形ABCD是平行四边形,AD/BC,AD=BC,A、AE=CF,DE=BF,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;B、BE=DF,四边形BFDE

13、是等腰梯形,本选项不一定能判定BE/DF;C、AD/BC,BED+EBF=180,EDF+BFD=180,EBF=FDE,BED=BFD,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;D、AD/BC,BED+EBF=180,EDF+BFD=180,BED=BFD,EBF=FDE,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF故选B【答案点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键4、D【答案解析】分两种情形讨论当点P顺时针旋转时,图象是,当点P逆时针旋转时,图象是,由此即可解决问题【题目详解】分两种情况讨论:当点

14、P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象符合;当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象符合故答案为或故选D【答案点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型5、C【答案解析】可以用物理的思维来解决这道题.【题目详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.【答案点睛】理解转折点的含义是解决这一类题的关键.6、C【答案

15、解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质注意:根据斜边和直角边对应相等可以证明BDFADE详解:AB=AC,ADBC,BD=CD 又BAC=90,BD=AD=CD 又CE=AF,DF=DE,RtBDFRtADE(SAS), DBF=DAE=9062=28 故选C点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键7、D【答案解析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1【题目详解】连接OAO的半径为5,CD=2,OD=5-2=3,即OD=

16、3;又AB是O的弦,OCAB,AD=AB;在直角三角形ODC中,根据勾股定理,得AD=4,AB=1故选D【答案点睛】本题考查了垂径定理、勾股定理解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度8、D【答案解析】由已知条件得到AD=AD=4,AO=AB=2,根据勾股定理得到OD= =2,于是得到结论【题目详解】解:AD=AD=4,AO=AB=1,OD=2,CD=4,CDAB,C(4,2),故选:D【答案点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键9、A【答案解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,点P的坐

17、标为(3,4)故选A10、C【答案解析】根据图像可得:a0,b0,c=0,即abc=0,则正确;当x=1时,y0,即a+b+c0,则错误;根据对称轴可得:b2a=3根据函数与x轴有两个交点可得:b2故选C.【答案点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.11、D【答案解析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案【题目详解】A.(a+b)2=a2+b2+2ab,故此选项错误;B.3a+4a=7a,故此选项错误;C.(ab)3=a3b3,故此选项错误;D.a2a5=a7,正确。故选:D

18、.【答案点睛】本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式,解题的关键是掌握它们的概念进行求解.12、A【答案解析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案【题目详解】该几何体的俯视图是:故选A【答案点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、.【答案解析】找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论【题目详解】从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使

19、这三定组成等腰三角形,所画三角形时等腰三角形的概率是,故答案是:【答案点睛】考查的是概率公式,熟记随机事件A的概率P(A)事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键14、(b,a)【答案解析】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设AOX=,A1OD=,A1坐标(x,y)则+=90sin=cos cos=sin sin=cos=同理cos =sin=所以x=b,y=a,故A1坐标为(b,a)【点评】重点理解三角函数的定义和求解方法,主要应用公式sin=cos,cos=sin15、1a1【答案解析】根据y的取值范围可以求得相应的x的取值范围【题目详解】

20、解:二次函数yx14x+4(x1)1,该函数的顶点坐标为(1,0),对称轴为:x,把y0代入解析式可得:x1,把y1代入解析式可得:x13,x11,所以函数值y的取值范围为0y1时,自变量x的范围为1x3,故可得:1a1,故答案为:1a1【答案点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答16、【答案解析】作DHAE于H, 根据勾股定理求出AB, 根据阴影部分面积=ADE的面积+EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.【题目详解】解:如图作DHAE于H,AOB=, OA=2, OB=1,AB=,由旋转的性质可知

21、OE=OB=1,DE=EF=AB=,可得DHEBOA,DH=OB=1,阴影部分面积=ADE的面积+EOF的面积+扇形AOF的面积-扇形DEF的面积,故答案:【答案点睛】本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键17、x2且x1【答案解析】分析:根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.详解:有意义, ,解得:且.故答案为:且.点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.18、7516【答案解析】测试卷分析:要求重叠部分AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知AEF

22、=CEF,由平行得CEF=AFE,代换后,可知AE=AF,问题转化为在RtABE中求AE因此设AE=x,由折叠可知,EC=x,BE=4x,在RtABE中,AB2+BE2=AE2,即32+(4x)2=x2,解得:x=258,即AE=AF=25因此可求得SAEF=12AFAB=12考点:翻折变换(折叠问题)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)BC=25;BF=【答案解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明ABF=90(2)利用已知条件证得AGCABF,利

23、用比例式求得线段的长即可(1)证明:连接AE,AB是O的直径,AEB=90,1+2=90AB=AC,1=CABCBF=CAB,1=CBFCBF+2=90即ABF=90AB是O的直径,直线BF是O的切线(2)解:过点C作CGAB于GsinCBF=,1=CBF,sin1=,在RtAEB中,AEB=90,AB=5,BE=ABsin1=,AB=AC,AEB=90,BC=2BE=2,在RtABE中,由勾股定理得AE=2,sin2=,cos2=,在RtCBG中,可求得GC=4,GB=2,AG=3,GCBF,AGCABF,=BF=20、【答案解析】直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以

24、及特殊角的三角函数值化简进而得出答案【题目详解】原式=92+12=【答案点睛】本题考查了实数运算,正确化简各数是解题的关键21、(1)AFE. EF=BE+DF.(2)BF=DF-BE,理由见解析;(3) 【答案解析】测试卷分析:(1)先根据旋转得:计算 即点共线,再根据SAS证明AFEAFG,得EF=FG,可得结论EF=DF+DG=DF+AE;(2)如图2,同理作辅助线:把ABE绕点A逆时针旋转至ADG,证明EAFGAF,得EF=FG,所以EF=DFDG=DFBE;(3)如图3,同理作辅助线:把ABD绕点A逆时针旋转至ACG,证明AEDAEG,得,先由勾股定理求的长,从而得结论测试卷解析:(

25、1)思路梳理:如图1,把ABE绕点A逆时针旋转至ADG,可使AB与AD重合,即AB=AD,由旋转得:ADG=A=,BE=DG,DAG=BAE,AE=AG,FDG=ADF+ADG=+=,即点F. D.G共线,四边形ABCD为矩形,BAD=,EAF=, 在AFE和AFG中, AFEAFG(SAS), EF=FG,EF=DF+DG=DF+AE;故答案为:AFE,EF=DF+AE;(2)类比引申:如图2,EF=DFBE,理由是:把ABE绕点A逆时针旋转至ADG,可使AB与AD重合,则G在DC上,由旋转得:BE=DG,DAG=BAE,AE=AG,BAD=,BAE+BAG=,EAF=,FAG=,EAF=F

26、AG=,在EAF和GAF中, EAFGAF(SAS), EF=FG,EF=DFDG=DFBE;(3)联想拓展:如图3,把ABD绕点A逆时针旋转至ACG,可使AB与AC重合,连接EG,由旋转得:AD=AG,BAD=CAG,BD=CG,BAC=,AB=AC,B=ACB=,ACG=B=,BCG=ACB+ACG=+=,EC=2,CG=BD=1,由勾股定理得: BAD=CAG,BAC=,DAG=,BAD+EAC=,CAG+EAC=EAG,DAE=,DAE=EAG=,AE=AE,AEDAEG, 22、(1)见解析;(2)ADBC,ECAF,EDBF,ABDC.【答案解析】整体分析:(1)用ASA证明ADE

27、CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据ADECBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.解:(1)证明:ADBC,DEBF,EF,DACBCA,DAEBCF.在ADE和CBF中,ADECBF,ADBC,四边形ABCD是平行四边形(2)ADBC,ECAF,EDBF,ABDC.理由如下:ADECBF,ADBC,EDBF.AECF,ECAF.四边形ABCD是平行四边形,ABDC.23、(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;(2)共有三种调配方案方案一: 型挖据机7台,型挖掘机5台;方案二: 型挖掘机8

28、台,型挖掘机4台;方案三: 型挖掘机9台,型挖掘机3台当A型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元【答案解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得解得所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米(2)设型挖掘机有台,总费用为元,则型挖据机有台根据题意,得 ,因为,解得,又因为,解得,所以所以,共有三种调配方案方案一:当时, ,即型挖据机7台,型挖掘机5台;方案二:当时, ,即型挖掘机8台,型

29、挖掘机4台;方案三:当时, ,即型挖掘机9台,型挖掘机3台,由一次函数的性质可知,随的减小而减小,当时,此时型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题24、(1)CE=BD,CEBD(2)(1)中的结论仍然成立理由见解析;(3).【答案解析】分析:(1)线段AD绕点A逆时针旋转90得到AE,根据旋转的性质得到AD=AE,BAD=CAE,得到BADCAE,CE=BD,ACE=B,得到BCE=BCA+ACE=90,于是有CE=BD,CEBD(2)证明的方法与(1)类

30、似(3)过A作AMBC于M,ENAM于N,根据旋转的性质得到DAE=90,AD=AE,利用等角的余角相等得到NAE=ADM,易证得RtAMDRtENA,则NE=MA,由于ACB=45,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到DCF=90,由此得到RtAMDRtDCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值详解:(1)AB=AC,BAC=90,线段AD绕点A逆时针旋转90得到AE,AD=AE,BAD=CAE,BADCAE,CE=BD,ACE=B,BCE=BCA+ACE=90,BDCE;故答案为CE=BD,CEBD(2

31、)(1)中的结论仍然成立理由如下:如图,线段AD绕点A逆时针旋转90得到AE,AE=AD,DAE=90,AB=AC,BAC=90CAE=BAD,ACEABD,CE=BD,ACE=B,BCE=90,即CEBD,线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CEBD(3)如图3,过A作AMBC于M,ENAM于N,线段AD绕点A逆时针旋转90得到AEDAE=90,AD=AE,NAE=ADM,易证得RtAMDRtENA,NE=AM,ACB=45,AMC为等腰直角三角形,AM=MC,MC=NE,AMBC,ENAM,NEMC,四边形MCEN为平行四边形,AMC=90,四边形MCEN为矩形,DC

32、F=90,RtAMDRtDCF,设DC=x,ACB=45,AC=,AM=CM=1,MD=1-x,CF=-x2+x=-(x-)2+,当x=时有最大值,CF最大值为点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质25、(1)证明见解析;(2)证明见解析;(1)BC=4;【答案解析】分析:(1)由菱形知D=BEC,由A+D=BEC+AEC=180可得A=AEC,据此得证;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=

33、CD,证BEFBGA得,即BFBG=BEAB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)设AB=5k、AC=1k,由BC2-AC2=ABAC知BC=2k,连接ED交BC于点M,RtDMC中由DC=AC=1k、MC=BC=k求得DM=k,可知OM=OD-DM=1-k,在RtCOM中,由OM2+MC2=OC2可得答案设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得ABAC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案详解:(1)四边形EBDC为菱形,D=BEC,四边形ABDC是圆的内接四边形,A+D=180,又BEC+AEC=180,A=AEC,AC=CE;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,CF=CG=AC,四边形AEF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论