版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取同学乙猜:刘云被清华大学录取,张熙被北京大学录取同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对那么曾玉、刘云、李梦、张熙四人被录取的大小可能是( )A北京大学、清华大学、复旦大学、武汉大学B武汉大学、清华大学、复旦大学、北京大学C清华大学、北京大学、武汉大学 、复旦大学D武汉大学、复旦大学、清华大学、北京大学2
3、己知函数,其中为函数的导数,求()ABCD3在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称,若角是第三象限角,且,则( )ABCD4函数yx42x25的单调递减区间为()A(,1和0,1B1,0和1,)C1,1D(,1和1,)5由曲线xy=1,直线y=x,x=3及x轴所围成的曲边四边形的面积为( )A116 B92 C16已知定义在R上的增函数f(x),满足f(x)f(x)0,x1,x2,x3R,且x1x20,x2x30,x3x10,则f(x1)f(x2)f(x3)的值 ()A一定大于0B一定小于0C等于0D正负都有可能7曲线对称的曲线的极坐标方程是( )ABCD8过抛物线y24x
4、焦点F的直线交抛物线于A、B两点,交其准线于点C,且A、C位于x轴同侧,若|AC|2|AF|,则|BF|等于()A2B3C4D59将7个座位连成一排,安排4个人就坐,恰有两个空位相邻的不同坐法有 ( )A240B480C720D96010对任意实数,若不等式在上恒成立,则的取值范围是( )ABCD11若实数x,y满足约束条件x-3y+403x-y-40 x+y0,则A-1B1C10D1212已知函数在处取得极值,则的图象在处的切线方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数若存在互不相等实数有则的取值范围是_.14设实数x,y满足,则的最小值为_.15若正数
5、,满足,则的取值范围是_16已知定义域为的偶函数,其导函数为,满足,则的解集为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数.(1)当时,求的单调区间;(2)当时,恒成立,求的取值范围;(3)求证:当时,.18(12分)在数列中,其中实数(1)求,并由此归纳出的通项公式;(2) 用数学归纳法证明()的结论19(12分)已知函数是上的奇函数(为常数),.(1)求实数的值;(2)若对任意,总存在,使得成立,求实数的取值范围;(3)若不等式成立,求证实数的取值范围.20(12分)已知函数,.(1)若,求函数的单调递增区间;(2)若函数在区间上单调递增,求实数的取
6、值范围.21(12分)已知等比数列,的公比分别为,(1)若,求数列的前项和;(2)若数列,满足,求证:数列不是等比数列22(10分)栀子原产于中国,喜温暖湿润、阳光充足的环境,较耐寒.叶,四季常绿;花,芳香素雅.绿叶白花,格外清丽.某地区引种了一批栀子作为绿化景观植物,一段时间后,从该批栀子中随机抽取棵测量植株高度,并以此测量数据作为样本,得到该样本的频率分布直方图(单位:),其中不大于(单位:)的植株高度茎叶图如图所示.(1)求植株高度频率分布直方图中的值;(2)在植株高度频率分布直方图中,同一组中的数据用该区间的中点值代表,植株高度落入该区间的频率作为植株高度取该区间中点值的频率,估计这批
7、栀子植株高度的平均值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案.【详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学(另外武汉大学、清华大学、北京大学、复旦大学也满足).故选:.【点睛】本题考查了逻辑推理,意在考查学生的推理能力.2、A【解析】设,判断奇偶性和导数的奇偶性,求和即可得到所求值【详解】解:函数设,则即,即,则,又,可得,即有,故选:【点睛】本题
8、考查函数的奇偶性和导数的奇偶性,考查运算能力,属于中档题3、A【解析】由单位圆中的三角函数线可得:终边关于轴对称的角与角的正弦值相等,所以,再根据同角三角函数的基本关系,结合余弦函数在第四象限的符号,求得.【详解】角与角终边关于轴对称,且是第三象限角,所以为第四象限角,因为,所以,又,解得:,故选A.【点睛】本题考查单位圆中三角函数线的运用、同角三角函数的基本关系,考查基本的运算求解能力.4、A【解析】对函数求导,研究导函数的正负,求使得导函数小于零的自变量的范围,进而得到单调区间.【详解】y4x34x4x(x21),令y0,得x2-x1,所以 同理得即f(x1)f(x2)f(x3)0,选A.
9、点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行7、A【解析】先把两曲线极坐标方程化为普通方程,求得对称曲线,再转化为极坐标方程。【详解】化为标准方程可知曲线为,曲线为,所以对称直线为,化为极坐标方程为,选A.【点睛】由直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。8、C【解析】由题意可知:|AC|2|AF|,则ACD,利用三角形相似关系可知丨AF丨丨AD丨,直线AB的切斜角,设直线l方程,代入椭圆方程,利用韦达定理及抛物线弦长公式求得丨A
10、B丨,即可求得|BF|【详解】抛物线y24x焦点F(1,0),准线方程l:x1,准线l与x轴交于H点,过A和B做ADl,BEl,由抛物线的定义可知:丨AF丨丨AD丨,丨BF丨丨BE丨,|AC|2|AF|,即|AC|2|AD|,则ACD,由丨HF丨p2,则丨AF丨丨AD丨,设直线AB的方程y(x1),整理得:3x210 x+30,则x1+x2,由抛物线的性质可知:丨AB丨x1+x2+p,丨AF丨+丨BF丨,解得:丨BF丨4,故选:C【点睛】本题考查抛物线的性质,直线与抛物线的位置关系,考查相似三角形的性质,考查计算能力,数形结合思想,属于中档题9、B【解析】12或67为空时,第三个空位有4种选择
11、;23或34或45或56为空时,第三个空位有3种选择;因此空位共有24+43=10、B【解析】考点:绝对值不等式;函数恒成立问题分析:要使不等式|x+2|-|x-1|a恒成立,需f(x)=|x+2|-|x-1|的最小值大于a,问题转化为求f(x)的最小值解:(1)设f(x)=|x+2|-|x-1|,则有f(x)=,当x-2时,f(x)有最小值-1;当-2x1时,f(x)有最小值-1;当x1时,f(x)=1综上f(x)有最小值-1,所以,a-1故答案为B11、C【解析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面
12、直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数z=3x+2y经过平面区域的点(2,2)时,【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.12、A【解析】利用列方程,求得的值,由此求得,进而求得的图象在处的切线方程.【详解】,函数在处取得极值,解得,于是,可得的图象在处的切线方程为,即故选:A【点睛】本小题主要考查根据极值点求参数,考查利用导数求切线方程,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
13、不妨设,根据二次函数对称性求得的值.根据绝对值的定义求得的关系式,将转化为来表示,根据的取值范围,求得的取值范围.【详解】不妨设,画出函数的图像如下图所示.二次函数的对称轴为,所以.不妨设,则由得,得,结合图像可知,解得,所以,由于在上为减函数,故.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.14、【解析】由题意画出可行域,令,转化目标函数为,数形结合即可得解.【详解】由题意画出可行域,如图,令,则,数形结合可知,当直线过点A时,取最小值,由可得点,所以.故答案为:.【点睛】本题考查了简单的线性规划,属于基础
14、题.15、【解析】利用基本不等式将变形为即可求得的取值范围.【详解】,即,解得,即,当且仅当时,等号成立.故答案为:.【点睛】本题主要考查利用基本不等式求代数式的取值范围问题,属常规考题.16、【解析】令,对函数求导,根据条件可得单调递增,且单调递增,进而利用单调性和奇偶性求解【详解】的解集为的解集,令,则,因为,所以当时有,所以,即当时,单调递增,又因为,所以,所以的解集为的解集,由单调性可知, 又因为为偶函数,所以解集为【点睛】本题解题的关键是构造新函数,求导进而得出函数的单调性,然后利用奇偶性和单调性求解三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的单调递减
15、区间为;的单调递增区间为;(2);(3)见解析【解析】【试题分析】(1)直接对函数求导得,借助导函数值的符号与函数单调性之间的关系求出其单调区间;(2)先将不等式中参数分离分离出来可得:,再构造函数,求导得,借助,推得,从而在上单调递减,进而求得;(3)先将不等式等价转化为,再构造函数,求导可得,由(2)知时,恒成立,所以,即恒成立,故在上单调递增,所以,因此时,有:解:(1)当时,则,令得,所以有即时,的单调递减区间为;的单调递增区间为.(2)由,分离参数可得:,设,又,则在上单调递减,即的取值范围为.(3)证明:等价于设,由(2)知时,恒成立,所以,恒成立在上单调递增,因此时,有.点睛:解
16、答本题的第一问时,先对函数求导得,借助导函数值的符号与函数单调性之间的关系求出其单调区间;求解第二问时,先将不等式中参数分离出来可得,再构造函数,求导得,借助,推得,从而在上单调递减,进而求得;第三问的证明过程中,先将不等式等价转化为,再构造函数,求导可得,由(2)知时,恒成立,所以,即恒成立,故在上单调递增,所以,因此证得当时,不等式成立。18、 (1) (2)见解析【解析】试题分析:(1),可归纳猜测;(2)根据数学归纳法证明原理,当时,由显然结论成立假设时结论成立,即只需证明当时,即可.试题解析:(1) 由,及 得, 于是猜测: (2)下面用数学归纳法予以证明:当时,由显然结论成立假设时
17、结论成立,即那么,当时,由 显然结论成立由、知,对任何都有 19、(1).(2).(3)【解析】因为函数是R上的奇函数,令可求a;对任意,总存在,使得成立,故只需满足值域是的值域的子集;由不等式得,构造利用单调性可求解正实数t的取值范围【详解】(1)因为为上的奇函数,所以,即,解得得,当时,由得为奇函数,所以.(2)因为,且在上是减函数,在上为增函数所以在上的取值集合为.由,得是减函数,所以在上是减函数,所以在上的取值集合为.由“任意,总存在,使得成立”在上的取值集合是在上的取值集合的子集,即.则有,且,解得:.即实数的取值范围是.(3)记,则,所以是减函数,不等式等价于,即,因为是减函数,所
18、以,解得,所以实数的取值范围是.【点睛】本题主要考查了函数最值的求法,通过子集的关系求参数的范围,构造函数求参数范围,属于难题20、(1)的单调递增区间为和;(2).【解析】(1)由求得,求,由可解得函数的增区间;(2)在上恒成立,转化为求函数最值即得【详解】(1)若,则, ,函数的单调递增区间为和;(2)若函数在区间上单调递增, 则, 则, 因,则.【点睛】本题考查用导数研究函数的单调性属于基础题21、(1);(2)证明见解析.【解析】(1)分别求出,再得,仍然是等比数列,由等比数列前项和公式可得;(2)由已知,假设是等比数列,则,代入求得,与已知矛盾,假设错误【详解】(1), 则;证明:(2)假设数列是等比数列,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冲压安全管理制度规定
- 2024年陕西旅客运输从业资格证考试题库
- 吉首大学《化工环境保护概论》2021-2022学年第一学期期末试卷
- 吉林艺术学院《流行音乐演唱录音实践Ⅲ》2021-2022学年第一学期期末试卷
- 2024年供应协议书模板合同模板下载
- 吉林师范大学《篆书理论与技法I》2021-2022学年第一学期期末试卷
- 老板委托收款协议书范文模板
- 吉林师范大学《数字图像处理》2021-2022学年期末试卷
- 中学教育师德师风管理制度
- 体育赛事组织安全预案
- 天津市河东区2024-2025学年七年级上学期期中数学试卷(含答案)
- 《Vue 3基础入门》课件 第一章 vue 3简介
- 【7道人教版期中】安徽省合肥市琥珀中学+2023-2024学年七年级上学期11月期中道德与法治试题(含解析)
- 中国移动自智网络白皮书(2024) 强化自智网络价值引领加速迈进L4级新阶段
- GB/T 31486-2024电动汽车用动力蓄电池电性能要求及试验方法
- 2024年卫生系统招聘考试-卫生系统招聘考试(临床医学专业知识)考试近5年真题集锦(频考类试题)带答案
- 2024年安徽省滁州市琅琊区城市管理行政执法局招聘15人历年高频难、易错点500题模拟试题附带答案详解
- 插画风浙江大学浙大介绍大学介绍
- 畜禽解剖生理5消化系统课件
- 供应链金融物流行业发展趋势及前景展望分析报告
- 建设施工合同书证据目录
评论
0/150
提交评论