




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1双曲线x2a2Ay=2xBy=3x2ABC的内角A、B、C的对边分别为a、b、c,已知,则()ABCD3已知直线l、直线m和平面,它们的位置关系同时满足以下三个条件:;l与m是互相垂直的异面直线若P是平面上的动点,且到l、m的距离相等,则点P的轨迹为( )A直线B椭圆C抛物线D双曲线4直线与圆有两个不同交点的充要条件是( )ABCD5已知实数,满足约束条件,若不等式恒成立,则实数的最大值为( )ABCD6某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A抽签法B随机数法C系统抽样
3、法D分层抽样法7下面命题正确的有( )a,b是两个相等的实数,则是纯虚数;任何两个复数不能比较大小;若,且,则.A0个B1个C2个D3个8半径为2的球的表面积为( )ABCD9已知集合,则集合( )ABCD10动点在圆上移动时,它与定点连线的中点的轨迹方程是 ( )ABCD11定义在上的函数满足,且当时,对,使得,则实数的取值范围为( )ABCD12已知函数在区间上的图像是连续不断的一条曲线,命题:总存在,有;命题:若函数在区间上有,则是的( )A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要二、填空题:本题共4小题,每小题5分,共20分。13若正方体的表面积为,则它的外接球的表面
4、积为_.14双曲线的渐近线方程为 15已知实数,满足不等式组且的最大值为,则=_16用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一种颜色,相邻部分涂不同颜色,则涂色的方法共有 种三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱锥中,(1)求证:;(2)求二面角的余弦值18(12分)函数(1)若函数在内有两个极值点,求实数的取值范围;(2)若不等式在上恒成立,求实数的取值范围19(12分)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(1)求a的值;(2)
5、若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大利润.20(12分)(1)3个不同的球放入5个不同的盒子,每个盒子至多放1个球,共有多少种放法?(2)3个不同的球放入5个不同的盒子,每个盒子放球量不限,共有多少种放法?21(12分)已知函数在处取得极值(1)求实数a的值;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数b的取值范围22(10分)小明某天偶然发现班上男同学比女同学更喜欢做几何题,为了验证这一现象是否具有普遍性,他决定在学校开展调查研究:他在全校3000名同学中随机抽取了50名,给这50名同学同等难度的几何题和代数题各一道,
6、让同学们自由选择其中一道题作答,选题人数如下表所示:几何题代数题合计男同学22830女同学81220合计302050(1)能否据此判断有的把握认为选代数题还是几何题与性别有关?(2)用以上列联表中女生选做几何题的频率作为概率,从该校所有女生(该校女生超过1200人)中随机选5名女生,记5名女生选做几何题的人数为,求的数学期望和方差.附表:0.150.100.050.0250.0100.0052.0722.7063.8415.0246.6357.879参考公式:,其中.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析
7、:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:e=因为渐近线方程为y=bax点睛:已知双曲线方程x2a22、D【解析】边化角,再利用三角形内角和等于180,全部换成B角,解出即可【详解】 ()【点睛】本题考查正弦定理解三角形,属于基础题3、D【解析】作出直线m在平面内的射影直线n,假设l与n垂直,建立坐标系,求出P点轨迹即可得出答案【详解】解:设直线m在平面的射影为直线n,则l与n相交,不妨设l与n垂直,设直线m与平面的距离为d,在平面内,以l,n为x轴,y轴建立平面坐标系,则P到直线l的距离为|y|,P到直线n的距离为|x|,P到直线m的距离为,|y
8、|,即y2x2d2,P点轨迹为双曲线故选:D【点睛】本题考查空间线面位置关系、轨迹方程,考查点到直线的距离公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题4、A【解析】由已知条件计算圆心到直线的距离和半径进行比较,即可求出结果【详解】圆,圆心到直线的距离小于半径,由点到直线的距离公式:,故选【点睛】本题考查了直线与圆的位置关系,根据题意将其转化为圆心到直线的距离,然后和半径进行比较,较为基础5、A【解析】绘制不等式组表示的平面区域如图所示,考查目标函数,由目标函数的几何意义可知,目标函数在点处取得最大值,在点或点处取得最小值,即题中的不等式即:,则:恒成立,原问题转化为求解函数的
9、最小值,整理函数的解析式有:,令,则,令,则在区间上单调递减,在区间上单调递增,且,据此可得,当时,函数取得最大值,则此时函数取得最小值,最小值为:综上可得,实数的最大值为本题选择A选项【方法点睛】本题主要考查基本不等式,在用基本不等式求最值时,应具备三个条件:一正二定三相等一正:关系式中,各项均为正数;二定:关系式中,含变量的各项的和或积必须有一个为定值;三相等:含变量的各项均相等,取得最值若等号不成立,则利用对勾函数的单调性解决问题6、D【解析】试题分析:由于样本中男生与女生在学习兴趣与业余爱好方面存在差异性,因此所采用的抽样方法是分层抽样法,故选D.考点:抽样方法.7、A【解析】对于找出
10、反例即可判断,根据复数的性质可判断【详解】若,则是0,为实数,即错误;复数分为实数和虚数,而任意实数都可以比较大小,虚数是不可以比较大小的,即错误;若,则,但,即错误;故选:A【点睛】本题主要考查了复数的概念与性质,属于基础题8、D【解析】根据球的表面积公式,可直接得出结果.【详解】因为球的半径为,所以该球的表面积为.故选:D【点睛】本题主要考查球的表面积,熟记公式即可,属于基础题型.9、B【解析】由并集的定义求解即可.【详解】由题,则,故选:B【点睛】本题考查集合的并集运算,属于基础题.10、B【解析】设连线的中点为,再表示出动点的坐标,代入圆化简即可.【详解】设连线的中点为,则因为动点与定
11、点连线的中点为,故 ,又在圆上,故,即即故选:B【点睛】本题主要考查了轨迹方程的一般方法,属于基础题型.11、D【解析】由题知问题等价于函数在上的值域是函数在上的值域的子集当时,由二次函数及对勾函数的图象及性质,得此时,由,可得,当时,则在的值域为当时,则有,解得,当时,不符合题意;当时,则有,解得综上所述,可得的取值范围为 故本题答案选点睛:求解分段函数问题应对自变量分类讨论,讨论的标准就是自变量与分段函数所给出的范围的关系,求解过程中要检验结果是否符合讨论时的范围讨论应该不重复不遗漏12、C【解析】利用充分、必要条件的定义及零点存在性定理即可作出判断.【详解】命题推不出命题q,所以充分性不
12、具备;比如:,区间为,满足命题p,但,根据零点存在性定理可知,命题能推出命题p,所以必要性具备;故选:C【点睛】本题考查充分必要条件,考查零点存在性定理,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由正方体的外接球的直径与正方体的棱长之间的关系求解.【详解】由已知得正方体的棱长为,又因为正方体的外接球的直径等于正方体的体对角线的长,所以正方体的外接球的半径,所以外接球的表面积,故得解.【点睛】本题考查正方体的外接球,属于基础题.14、【解析】试题分析:由双曲线方程可知渐近线方程为考点:双曲线方程及性质15、【解析】作出可行域,目标函数可变为,令,作出,由平移可知直
13、线过时取最大值,则则故本题应填16、240【解析】试题分析:先涂(3)有5种方法,再涂(2)有4种方法,再涂(1)有3种方法,最后涂(4)有4种方法,所以共有5434=240种涂色方法考点:排列、组合.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)见证明;(2) 【解析】(1)取AB的中点D,连结PD,CD推导出ABPD,ABCD,从而AB平面PCD,由此能证明ABPC(2)作POCD交CD于O,作PEBC,连结OE推导出POAB,从而PO平面ABC,由三垂线定理得OEBC,从而PEO是所求二面角PBCA的平面角,由此能求出二面角PBCA的余弦值【详解】(1)取的
14、中点,连结,.因为,所以,所以平面,因为平面,所以.(2)作交于,又由POAB,所以PO平面ABC,作,连结,根据三垂线定理,可得,所以是所求二面角的平面角,求得,在直角中,则,所以【点睛】本题主要考查了线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题18、(1) 或(2)【解析】(1)先对函数求导、然后因式分解,根据函数在在内有两个极值点列不等式组,解不等式组求得的取值范围.(2)先对函数求导并因式分解.对分成三种情况,利用的单调性,结合不等式在上恒成立列不等式组,解不等式组求得的取值范围.【详解】解:(1)由题意知,有得
15、: 或 (2)当时,符合题意 当时,令,得或,此时函数的增区间为,减区间为此时只需:解得:或,故 当时,令,得或,此时函数的增区间为,减区间为,此时只需:解得:,故,由上知实数的取值范围为【点睛】本小题主要考查利用导数研究函数的单调区间、极值,考查利用导数求解不等式恒成立问题,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,综合性很强,属于难题.19、(1)6(2)x=4,46【解析】(1)由f(5)13代入函数的解析式,解关于a的方程,可得a值;(2)商场每日销售该商品所获得的利润每日的销售量销售该商品的单利润,可得日销售量的利润函数为关于x的三次多项式函数,再用求导数的方法讨论函
16、数的单调性,得出函数的极大值点,从而得出最大值对应的x值【详解】解:(1)因为x5时,y13,所以a2+1013,故(2)由()可知,该商品每日的销售量y=所以商场每日销售该商品所获得的利润为f(x)=(x-3)6从而,f(x)10(x6)2+2(x3)(x6)30(x6)(x4)于是,当x变化时,f(x)、f(x)的变化情况如下表: x(3,4)4 (4,6) f(x)+0 f(x) 单调递增极大值46 单调递减由上表可得,x4是函数f(x)在区间(3,6)内的极大值点,也是最大值点所以,当x4时,函数f(x)取得最大值,且最大值等于46答:当销售价格为4元/千克时,商场每日销售该商品所获得
17、的利润最大.【点睛】本题函数解析式的建立比较容易,考查的重点是利用导数解决生活中的优化问题,属于中档题20、(1).(2)【解析】(1)把三个不同的小球分别放入5个不同的盒子里(每个盒子至多放一个球),实际上是从5个位置选3个位置用3个元素进行排列,即可求得答案.(2)因为3个不同的球放入5个不同的盒子,每个盒子放球量不限,所以一个球一个球地放到盒子里去,每只球都可有5种独立的放法,即可求得答案.【详解】(1)把3个不同的小球分别放入5不同的盒子里(每个盒子至多放一个球),实际上是从5个位置选3个位置用3个元素进行排列,共有种结果,共有:方法(2)3个不同的球放入5个不同的盒子,每个盒子放球量
18、不限一个球一个球地放到盒子里去,每只球都可有5种独立的放法,由分步乘法计数原理,放法共有种共有:放法【点睛】本题的求解按照分步计数原理可先将球分组,选择盒子,再将球排列到选定的盒子里,这种先选后排的方法是最常用的思路,考查了分析能力和计算能力,属于中档题.21、 (1);(2)【解析】()函数,对其进行求导,在处取得极值,可得,求得值;()由知,得令则关于的方程在区间上恰有两个不同的实数根,转化为上恰有两个不同实数根,对对进行求导,从而求出的范围;【详解】()时,取得极值,故解得.经检验符合题意()由知,得 令 则在上恰有两个不同的实数根, 等价于上恰有两个不同实数根. 当时,于是上单调递增; 当时,于是在上单调递增; 依题意有 .【点睛】本题考查利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子商务平台运营销售合作协议
- 股份制企业合同文书范例与解析
- 网络直播行业版权使用许可协议
- 教育信息化产品采购安装协议
- 经典个人手车转让合同
- 海洋资源开发项目合作框架协议
- 电子发票开具专项协议
- 粤教版高中信息技术必修教学设计:4.1编制计算机程序解决问题
- Unit 5 There is a big bed 单元整体(教学设计)-2024-2025学年人教PEP版英语五年级上册
- 2025年冷拔钢项目合作计划书
- (完整版)苏教版六年级下数学比例重难点练习
- 热能与动力工程测试技术- 流量测量
- 中国古代文学史 建安文学与正始文学
- 课堂嵌入式评价及其应用
- 高中物理课程标准
- 化工原理传质导论
- 环境与可持续发展ppt课件(完整版)
- Linux操作系统课件(完整版)
- 跨境电商亚马逊运营实务完整版ppt课件-整套课件-最全教学教程
- 中国传媒大学《当代电视播音主持教程》课件
- 浙美版小学六年级美术下册全册精品必备教学课件
评论
0/150
提交评论