2022届江苏省苏州市陆慕高级中学数学高二第二学期期末统考模拟试题含解析_第1页
2022届江苏省苏州市陆慕高级中学数学高二第二学期期末统考模拟试题含解析_第2页
2022届江苏省苏州市陆慕高级中学数学高二第二学期期末统考模拟试题含解析_第3页
2022届江苏省苏州市陆慕高级中学数学高二第二学期期末统考模拟试题含解析_第4页
2022届江苏省苏州市陆慕高级中学数学高二第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,BC边上的高等于,则()ABCD2若曲线在点(0,n)处的切线方程x-y+1=0,则()A,B,C,D,3已知,、,则向量与的夹角是( )ABCD4已知线性回归方程相应于点的残差为,则的值为( )A1B2CD5从位男生,位女生中

2、选派位代表参加一项活动,其中至少有两位男生,且至少有位女生的选法共有( )A种B种C种D种6已知二项式的展开式的第二项的系数为,则( )ABC或D或7用0,1,9十个数字,可以组成有重复数字的三位数的个数为( )A243B252C261D2798用数学归纳法证明 ,从到,不等式左边需添加的项是( )ABCD9已知直线与圆相交所得的弦长为,则圆的半径( )AB2CD410展开式中x2的系数为( )A15B60C120D24011 “”是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件12定义在 上的函数满足下列两个条件:(1)对任意的 恒有 成立;(2)当 时,

3、;记函数 ,若函数恰有两个零点,则实数 的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13有甲、乙、丙三项不同任务,甲需由人承担,乙、丙各需由人承担,从人中选派人承担这三项任务,不同的选法共有_种(用数字作答)14如图,正方体中,E为线段的中点,则AE与所成角的余弦值为_15设集合,若,则的所有可能的取值构成的集合是_;16从这十个数中任取5个不同的数,则这5个数的中位数是6的概率为 _三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-4:坐标系与参数方程直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为

4、=2(sin+cos),直线l的参数方程为:()写出圆C和直线l的普通方程;()点P为圆C上动点,求点P到直线l的距离的最小值18(12分)正项数列的前项和满足.()求,;()猜想的通项公式,并用数学归纳法证明.19(12分)在某中学高中某学科竞赛中,该中学100名考生的参赛成绩统计如图所示(1)求这100名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);(2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?合格优秀合计男生18女生25合计100附:0.0500.0100.0053.8416.6357.87920

5、(12分)在中,角的对边分别为,满足(1)求角的大小(2)若,求的周长最大值21(12分)在直角坐标系中,曲线的参数方程为(为参数);以直角坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求的普通方程和的直角坐标方程;(2)若与交于点,求线段的长22(10分)从某公司生产线生产的某种产品中抽取1000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:(1)求这1000件产品质量指标的样本平均数和样本方差 (同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.(i)利用该

6、正态分布,求;()已知每件该产品的生产成本为10元,每件合格品(质量指标值)的定价为16元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户48元.若该公司卖出100件这种产品,记表示这件产品的利润,求.附:,若,则.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:设,故选C.考点:解三角形.2、A【解析】根据函数的切线方程得到切点坐标以及切线斜率,再根据导数的几何意义列方程求解即可【详解】曲线在点处的切线方程是,则,即切点坐标为,切线斜率,曲线方程为,则函数的导数 即,即,则,故选A【点睛】本题

7、主要考查导数的几何意义的应用,属于中档题应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.3、D【解析】设向量与的夹角为,计算出向量与的坐标,然后由计算出的值,可得出的值.【详解】设向量与的夹角为,则,所以,故选D.【点睛】本题考查空间向量的坐标运算,考查利用向量的坐标计算向量的夹角,考查计算能力,属于中等题.4、B【解析】根据线性回归方程估计y,再根据残差定义列方程,解得结果【详解】因为相对于点的残差为,所以,所以,解得,故选B【点睛】本题考查

8、利用线性回归方程估值以及残差概念,考查基本分析求解能力,属基础题.5、B【解析】由题意知本题要求至少有两位男生,且至少有1位女生,它包括:两个男生,两个女生;三个男生,一个女生两种情况,写出当选到的是两个男生,两个女生时和当选到的是三个男生,一个女生时的结果数,根据分类计数原理得到结果解:至少有两位男生,且至少有1位女生包括:两个男生,两个女生;三个男生,一个女生当选到的是两个男生,两个女生时共有C52C42=60种结果,当选到的是三个男生,一个女生时共有C53C41=40种结果,根据分类计数原理知共有60+40=100种结果,故选B6、A【解析】分析:根据第二项系数,可求出;由定积分基本性质

9、,求其原函数为,进而通过微积分基本定理求得定积分值。详解:展开式的第二项为 所以系数 ,解得 所以 所以选A点睛:本题考查了二项式定理和微积分基本定理的综合应用,通过方程确定参数的取值,综合性强,属于中档题。7、B【解析】由分步乘法原理知:用0,1,9十个数字组成的三位数(含有重复数字的)共有91010=900,组成无重复数字的三位数共有998=648,因此组成有重复数字的三位数共有900648=18、B【解析】分析:分析,时,左边起始项与终止项,比较差距,得结果.详解:时,左边为,时,左边为,所以左边需添加的项是 ,选B.点睛:研究到项的变化,实质是研究式子变化的规律,起始项与终止项是什么,

10、中间项是如何变化的.9、B【解析】圆心到直线的距离,根据点到直线的距离公式计算得到答案.【详解】根据题意:圆心到直线的距离,故,解得.故选:.【点睛】本题考查了根据弦长求参数,意在考查学生的计算能力和转化能力.10、B【解析】展开式的通项为,令6-r=2得r=4,展开式中x2项为,所以其系数为60,故选B11、A【解析】利用充分条件和必要条件的定义进行判断【详解】解:当时,所以 ,当时,所以 ,即所以“”是“”的充分不必要条件故选:A【点睛】此题考查充分条件,必要条件的应用,属于基础题12、C【解析】根据题中的条件得到函数的解析式为:f(x)x+2b,x(b,2b,又因为f(x)k(x1)的函

11、数图象是过定点(1,0)的直线,再结合函数的图象根据题意求出参数的范围即可【详解】因为对任意的x(1,+)恒有f(2x)2f(x)成立, 且当x(1,2时,f(x)2x;f(x)2(2)=4x,x(2,4,f(x)4(2)=8x,x(4,8,所以f(x)x+2b,x(b,2b(b取1,2,4)由题意得f(x)k(x1)的函数图象是过定点(1,0)的直线,如图所示只需过(1,0)的直线与线段AB相交即可(可以与B点重合但不能与A点重合)kPA2,kPB,所以可得k的范围为故选:C【点睛】解决此类问题的关键是熟悉求函数解析式的方法以及函数的图象与函数的性质,数形结合思想是高中数学的一个重要数学思想

12、,是解决数学问题的必备的解题工具二、填空题:本题共4小题,每小题5分,共20分。13、60【解析】分析:先从5人中选4人(组合),再给4个人分派3项任务,甲需2人,乙、丙各需由人。详解:先从5人中选4人(组合),再给4个人分派3项任务,甲需2人,乙、丙各需由人(乙、丙派的人不一样故要排列)。共有60种。 点睛:分配问题,先分组(组合)后分派(排列)。14、;【解析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出AE与CD1所成角的余弦值【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCDA1B1C1D1中棱长为2

13、,则A(2,0,0),E(2,2,1),C(0,2,0),D1(0,0,2),(0,2,1),(0,2,2),设AE与CD1所成角为,则cos,AE与CD1所成角的余弦值为故答案为【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题15、【解析】根据集合的包含关系可确定可能的取值,从而得到结果.【详解】由得:或或所有可能的取值构成的集合为:本题正确结果:【点睛】本题考查根据集合的包含关系求解参数值的问题,属于基础题.16、【解析】本题考査古典概型.从10个数中任取5个不同的数,有种方法,若5个数的中位数为6,则只需从0,1,

14、2,3,4,5中选两个,再从7,8,9中选两个不同的数即可,有种方法,故这5个数的中位数为6的概率.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()(x-1)2+(y-1)2【解析】试题分析:()由2=x2+y2,x=cos,y=sin试题解析:()由已知=2

15、(sin+cos所以x2+y2=2y+2x由x=2+t,y=-1+t,得y=-1+(x-2),所以直线l的普通方程为x-y-3=0()由圆的几何性质知点P到直线l的距离的最小值为圆心C到直线l的距离减去圆的半径,令圆心C到直线l的距离为d,则d=|-1+1-3|所以最小值为32考点:极坐标方程化为直角坐标方程,参数方程化为普通方程,直线与圆位置关系18、()()猜想证明见解析【解析】分析:(1)直接给n取值求出,.(2)猜想的通项公式,并用数学归纳法证明.详解:()令,则,又,解得;令,则,解得;令,则,解得.()由()猜想;下面用数学归纳法证明.由()可知当时,成立;假设当时,则.那么当时,

16、由 ,所以,又,所以,所以当时,.综上,.点睛:(1)本题主要考查数学归纳法,意在考查学生对该基础知识的掌握水平和基本计算能力.(2) 数学归纳法的步骤:证明当n=1时,命题成立。证明假设当n=k时命题成立,则当n=k+1时,命题也成立.由得原命题成立.19、 (1) (2)填表见解析,不能判断有99%的把握认为该学科竞赛成绩与性别有关【解析】(1)由每一组数据的中点值乘以该组的频率求和得答案;(2)计算70分以上的频率和频数,由此填写列联表,由表中数据计算观测值,对照临界值得出结论【详解】(1)由频率分布直方图,计算平均数为;(2)由题意,70分以上的频率为,频数为,70分及以下为,由此填写

17、列联表如下;合格优秀合计男生183048女生272552合计4555100由表中数据,计算2.0986.635;不能判断有99%的把握认为该学科竞赛成绩与性别有关【点睛】本题考查了频率分布直方图与独立性检验的应用问题,是基础题因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5时 横坐标即可,平均数是每个长方条的中点乘以间距再乘以长方条的高,之后将以上计算得到的每一个数值相加得到值.20、(1) (2)1【解析】试题分析:(1)由,根据正弦定理,得,可得,进而可得的值;(2)由(1)及正弦定理,得,可得的周长,结合范围,即可求的最大值.试题解析:(1)由及正弦定理,得 (2)解:由(I)得,由正弦定理得所以的周长 当时,的周长取得最大值为121、(1),;(2)【解析】分析:(1)消去参数,即可得到曲线的普通方程;根据极坐标与直角坐标的互化公式,即可求解曲线的直角坐标方程; (2)由(1)得圆的圆心为,半径为,利用圆的弦长公式,即可求解详解:(1) , (2)圆的圆心为,半径为,圆心到直线的距离为所以点睛:本题主要考查了参数方程与普通方程,以及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论