江苏省常州市教育学会学业水平监测2021-2022学年高二数学第二学期期末考试试题含解析_第1页
江苏省常州市教育学会学业水平监测2021-2022学年高二数学第二学期期末考试试题含解析_第2页
江苏省常州市教育学会学业水平监测2021-2022学年高二数学第二学期期末考试试题含解析_第3页
江苏省常州市教育学会学业水平监测2021-2022学年高二数学第二学期期末考试试题含解析_第4页
江苏省常州市教育学会学业水平监测2021-2022学年高二数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题

2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1曲线上一点处的切线方程是( )ABCD2下列说法正确的是( )A命题“若,则”的否命题为:“若,则”B已知是R上的可导函数,则“”是“x0是函数的极值点”的必要不充分条件C命题“存在,使得”的否定是:“对任意,均有”D命题“角的终边在第一象限角,则是锐角”的逆否命题为真命题3甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是( )A0.216B0.36C0.352D0.6484设函数,其中,存在

3、使得成立,则实数的值为()ABCD5根据如下样本数据得到的回归方程为,则345678A,B,C,D,6已知复数(其中为虚数单位),则ABCD7 “,”是“双曲线的离心率为”的( )A充要条件B必要不充分条件C既不充分也不必要条件D充分不必要条件8若函数在上有小于的极值点,则实数的取值范围是( )ABCD9不相等的三个正数a、b、c成等差数列,并且x是a、b的等比中项,y是b、c的等比中项,则x2、b2、y2三数( )A成等比数列而非等差数列B成等差数列而非等比数列C既成等差数列又成等比数列D既非等差数列又非等比数列10若,则()ABCD11下列函数中,在定义域内单调的是( )ABCD12中,则

4、的值是( )ABCD或二、填空题:本题共4小题,每小题5分,共20分。13若实数、满足,则的取值范围是_.14已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为1.3x1,则m_.x1234y0.11.8m415已知矩阵,则矩阵的逆矩阵为_.16下表提供了某学生做题数量x(道)与做题时间y(分钟)的几组对应数据:x(道)3456y(分钟)2.5t44.5根据上表提供的数据,得y关于x的线性回归方程为则表中t的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-4:坐标系与参数方程在极坐标系中,曲线,C与l有且仅有一个公

5、共点()求a;()O为极点,A,B为C上的两点,且,求的最大值18(12分)在直角坐标系中,直线:,圆:(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)若直线的极坐标方程为,设,的交点为,求的面积.19(12分)某厂生产某产品的年固定成本为250万元,每生产x千件,需另投入成本C(x)(万元),若年产量不足80千件,C(x)的图象是如图的抛物线,此时C(x)0的解集为(-30,0),且C(x)的最小值是-75,若年产量不小于80千件,C(x)=51x+10000(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该

6、厂在这一商品的生产中所获利润最大?20(12分)用数学归纳法证明.21(12分)已知.猜想的表达式并用数学归纳法证明你的结论.22(10分)(文科学生做)已知数列满足.(1)求,的值,猜想并证明的单调性;(2)请用反证法证明数列中任意三项都不能构成等差数列参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求导利用导数的几何意义求出曲线上一点处的切线斜率,再用点斜式写出方程即可.【详解】由题.故.故曲线上一点处的切线方程是.化简得.故选:A【点睛】本题主要考查了根据导数的几何意义求解函数在某点处的切线方程.属于基础题.2、

7、B【解析】试题分析:对于A,命题“若,则”的否命题为:“若,则”,不满足否命题的定义,所以A不正确;对于B,已知是R上的可导函数,则“”函数不一定有极值,“是函数的极值点”一定有导函数为,所以已知是上的可导函数,则“”是“是函数的极值点”的必要不充分条件,正确;对于C,命题“存在,使得”的否定是:“对任意,均有”,不满足命题的否定形式,所以不正确;对于D,命题“角的终边在第一象限角,则是锐角”是错误命题,则逆否命题为假命题,所以D不正确;故选B考点:命题的真假判断与应用3、C【解析】先列举出甲获胜的情况,再利用独立事件的概率乘法公式可计算出所求事件的概率。【详解】记事件A:甲获胜,则事件A包含

8、:比赛两局,这两局甲赢;比赛三局,前两局甲、乙各赢一局,第三局甲赢。由独立事件的概率乘法公式得PA故选:C.【点睛】本题考查独立事件的概率乘法公式的应用,解题前先要弄清事件所包含的基本情况,并逐一列举出来,并结合概率的乘法公式进行计算,考查计算能力,属于中等题。4、A【解析】试题分析:函数f(x)可以看作是动点M(x,lnx2)与动点N(A,2A)之间距离的平方,动点M在函数y=2lnx的图象上,N在直线y=2x的图象上,问题转化为求直线上的动点到曲线的最小距离,由y=2lnx得,y=2,解得x=1,曲线上点M(1,0)到直线y=2x的距离最小,最小距离D=,则f(x),根据题意,要使f(),

9、则f()=,此时N恰好为垂足,由,解得考点:导数在最大值、最小值问题中的应用5、B【解析】试题分析:由表格数据的变化情况可知回归直线斜率为负数,中心点为,代入回归方程可知考点:回归方程6、B【解析】分析:根据复数的运算法则和复数的模计算即可.详解:,则.故选:B.点睛:复数的代数形式的运算主要有加、减、乘、除及求低次方根除法实际上是分母实数化的过程7、D【解析】当时,计算可得离心率为,但是离心率为时,我们只能得到,故可得两者之间的条件关系.【详解】当时,双曲线化为标准方程是,其离心率是;但当双曲线的离心率为时,即的离心率为,则,得,所以不一定非要.故“”是“双曲线的离心率为”的充分不必要条件.

10、故选D.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不必要条件.8、B【解析】先对函数求导,令导函数等于0,在上有小于的极值点等价于导函数有小于0的根【详解】由因为在上有小于的极值点,所以有小于0的根,由的图像如图:可知有小于0的根需要,所以选择B【点睛】本题主要考查了利用导数判断函数极值的问题属于基础题9、B【解析】由已知条件,可得由得代入,得2b,即

11、x2y22b2.故x2、b2、y2成等差数列,故选B.10、A【解析】根据诱导公式和余弦的倍角公式,化简得,即可求解【详解】由题意,可得,故选A【点睛】本题主要考查了三角函数的化简求值问题,其中解答中合理配凑,以及准确利用诱导公式和余弦的倍角公式化简、运算是解答的关键,着重考查了推理与运算能力,属于基础题11、A【解析】指数函数是单调递减,再判断其它选项错误,得到答案.【详解】A. ,指数函数 是单调递减函数,正确B. 反比例函数,在单调递减,在单调递减,但在上不单调,错误C. ,在定义域内先减后增,错误D. ,双勾函数,时先减后增,错误故答案选A【点睛】本题考查了函数的单调性,属于简单题.1

12、2、B【解析】根据正弦定理求解.【详解】由正弦定理得,选B.【点睛】本题考查正弦定理,考查基本分析求解能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】利用椭圆的参数方程,设,代入所求代数式,换元,可得出,将代数式转化为关于的二次函数在区间上的值域来处理.【详解】设,则,设,则,其中,由于二次函数,当时,;当时,.因此,的取值范围是,故答案为.【点睛】本题考查椭圆参数方程的应用,考查三角函数的值域问题以及二次函数的值域,本题用到了两次换元,同时要注意关系式的应用,考查分析问题和解决问题的能力,属于中等题.14、3.1.【解析】分析:利用线性回归方程经过样本中心点,

13、即可求解.详解:由题意得 (1234)2.5,代入线性回归方程得1.32.512.25,2.25 (0.11.8m4),解得m3.1.故答案为:3.1.点睛:本题考查线性回归方程经过样本中心点,考查学生的计算能力,比较基础.15、【解析】分析:根据逆矩阵公式得结果.详解:因为的逆矩阵为,所以矩阵A的逆矩阵为点睛:求逆矩阵方法:(1)公式法:的逆矩阵为,(2)定义法:.16、3【解析】现求出样本的中心点,再代入回归直线的方程,即可求得的值.【详解】由题意可得,因为对的回归直线方程是,所以,解得.【点睛】本题主要考查了回归直线方程的应用,其中解答的关键是利用回归直线方程恒过样本中心点,代入求解,着

14、重考查了推理与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(3)(3)【解析】试题分析(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为,B的极角为+,则|OA|+|OB|=3cos+3cos(+)=3cos(+),利用三角函数的单调性即可得出解:()曲线C:=3acos(a2),变形3=3acos,化为x3+y3=3ax,即(xa)3+y3=a3曲线C是以(a,2)为圆心,以a为半径的圆;由l:cos()=,展开为,l的直角坐标方程为x+y3=2由直线l与圆C相切可得=a,解得a=3()不

15、妨设A的极角为,B的极角为+,则|OA|+|OB|=3cos+3cos(+)=3cossin=3cos(+),当=时,|OA|+|OB|取得最大值3考点:简单曲线的极坐标方程18、 (1)的极坐标方程为,的极坐标方程为.(2).【解析】分析:(1)直接利用可得的极坐标方程,:利用平方法消去参数,可得其普通方程,利用互化公式可得的极坐标方程;(2)将代入,得,利用极径的几何意义可得,由三角形面积公式可得结果.详解:(1)因为,的极坐标方程为,的极坐标方程为.(2)将代入,得,解得,.因为的半径为,则的面积.点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取

16、相应的参数可以把普通方程化为参数方程;利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题19、 (1) L(x)=-13x2【解析】(1)由题可知,利润=售价-成本,分别对年产量不足80件,以及年产量不小于80件计算,代入不同区间的解析式,化简求得L(x)=-(2)分别计算年产量不足80件,以及年产量不小于80件的利润,当年产量不足80件时,由配方法解得利润的最大值为950万元,当年产量不小于80件时,由均值不等式解得利润最大值为1000万元,故年产量为100件时,利润最大为1000万元.【详解】(1)当0 x80时,

17、L(x)=50 x-C(x)-250=50 x-1当x80时,L(x)=50 x-C(x)-250=50 x-51x-10000所以L(x)=-13x(2)当0 x80时,L(x)=-此时,当x=60时,L(x)取得最大值L(60)=950万元当x80时,L(x)=1200-此时,当x=10000 x时,即x=100时,L(x)取得最大值L(100)=1000万元,所以年产量为100件时,利润最大为1000万元考点:配方法求最值均值不等式20、见解析.【解析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证时不等式成立;(2)假设当时成立,利用放缩法证明时,不等式也成立详解:证明:当时

18、,左边,不等式成立.假设当时,不等式成立,即,则当时,当时,不等式成立.由知对于任意正整数,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力21、证明见解析【解析】首先计算,猜想, 再用数学归纳法证明.【详解】 猜想, 下面用数学归纳法证明:时,猜想成立; 假设时猜想成立,即则时,由及得 又=, 时猜想成立.由知.【点睛】本题考查了数学归纳法,意在考查学生的归纳推理能力和计算能力.22、 (1) ,猜想该数列为单调递减数列,证明见解析.(2)见解析.【解析】分析:(1)由题可直接计算,的值,根据数值的增减性可猜想单调性;(2)反证法证明,先假设结论的反面成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论