数字信号处理办法DigitalSignalProcessing(DSP)_第1页
数字信号处理办法DigitalSignalProcessing(DSP)_第2页
数字信号处理办法DigitalSignalProcessing(DSP)_第3页
数字信号处理办法DigitalSignalProcessing(DSP)_第4页
数字信号处理办法DigitalSignalProcessing(DSP)_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数字信号处理办法DigitalSignalProcessing(DSP) 7.1 概述7.1.1 滤波器的分类 这里主要讨论经典滤波器的设计。 按功能划分经典滤波器又可分为低通、高通、带通、带阻四种滤波器 图7-1 理想低通、高通、带通和带阻滤波器幅度特性 数字信号处理办法DigitalSignalProcessing(DSP) 经典滤波器设计从实现方法上分为IIR滤波器和FIR滤波器。它是一个线性时不变离散时间系统,如果滤波器用单位脉冲响应序列 表示,其输入 与输出 之间的关系可以表示为: 的Z变换称为系统函数。IIR滤波器和FIR滤波器的系统函数分别是:数字信号处理办法DigitalSig

2、nalProcessing(DSP)7.1.2 数字滤波器的性能要求 一个理想滤波器,要求所在通频带内幅频响应是一常数;相位频率相应为零或是频率的线性函数。但一个实际的滤波器要是不可能得到上述幅频和相频响应。以低通滤波器为例,频率响应有通带、过渡带及阻带三个范围。1 :通带衰减 2 :阻带衰减 c :通带截止频率 st:阻带截止频率c st :过渡带 数字信号处理办法DigitalSignalProcessing(DSP)stc图7-2 逼近理想低通滤波器得容限图通带最大衰减。数字信号处理办法DigitalSignalProcessing(DSP)当幅度下降到 , ,此时 ,称 为3dB通带截

3、止频率。阻带最小衰减数字信号处理办法DigitalSignalProcessing(DSP)7.1.3 数字滤波器设计方法概述 设计IIR数字滤波器一般有以下两种方法:1. 模拟滤波器:首先设计一个合适的模拟滤波器,然后将它转换成满足给定指标的数字滤波器,这种方法适合于设计幅频特性比较规则的滤波器,例如低通、高通、带通、带阻等。2.直接在频域或者时域中进行数字滤波器设计,由于要联立方程,设计时需要计算机作辅助设计。数字信号处理办法DigitalSignalProcessing(DSP)1.设计的一般方法 IIR滤波器以模拟低通滤波器为基础的设计方法,为了设计其他的选频滤波器(高通,带通,带阻等

4、),需要对低通滤波器进行频率转换,在设计过程中有两种不同的变换,频带变换和模拟/数字变换。根据这两种变换的先后次序,引出两种设计方法。 数字信号处理办法DigitalSignalProcessing(DSP)图7-3 IIR滤波器的设计流程2.巴特沃思低通滤波器(1)基本性质 巴特沃思滤波器以巴特沃思函数来近似滤波器的系统函数。巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。 数字信号处理办法DigitalSignalProcessing(DSP)(7.2.1).下面归纳了巴特沃斯滤波器的主要特征 a.对所有的N, 。 巴特沃思滤波器的低通模平方函数表示b. 对所有的N, 即

5、c. 是 的单调下降函数。d. 随着阶次N的增大而更接近于理想低通滤波器。数字信号处理办法DigitalSignalProcessing(DSP) 如图7-4,可以看出滤波器的幅频特性随着滤波器阶次N的增加而变得越来越好,在截止频率 处的函数值始终为1/2的情况下,通带内有更多的频带区的值接近于1;在阻带内更迅速的趋近于零。 图7-4 巴特沃思低通滤波平方幅频特性函数数字信号处理办法DigitalSignalProcessing(DSP) 在以后的设计和分析时,经常用归一化巴特沃思低通滤波器为原型滤波器,一旦归一化低通滤波器的系统函数确定后,其它巴特沃思低通滤波、高通、带通、带阻滤波器的传递函

6、数都可以通过变换法从归一化低通原型的传递函数 得到。归一化原型滤波器是指截止频率 已经归一化成 的低通滤波器。对于截止频率为某个 的低通滤波器,则令 代替归一化原型滤波器系统函数中的 ,即 对于其他高通、带通、带阻滤波器,可应用后面讨论到的频带变换法,由其变换得出。 数字信号处理办法DigitalSignalProcessing(DSP)(2)系统函数和极点分布 设巴特沃斯的系统函数 ,则频率响应是 令上式分母为零可以得到 的2N个极点Sk 并解得当N为偶数时则 数字信号处理办法DigitalSignalProcessing(DSP)N为奇数: 的极点均匀分布在s平面的单位圆上,共有2N个角度

7、间隔为/N的极点,极点关于j轴对称,不会落在虚轴上。将左半平面的极点构成 。 (3)设计过程巴特沃思低通滤波技术指标关系式为 ; 为通带边界频率 ; 为阻带边界频率数字信号处理办法DigitalSignalProcessing(DSP)代入(7.2.1) 化简后得 两式相比消去后得由此得取满足上式的最小整数N作为滤波器的阶数。 数字信号处理办法DigitalSignalProcessing(DSP)将N 带入式(7.2.4)或式(7.2.5)可得截止频率 或 查表求得归一化传输函数 ,令 代替归一化原型滤波器系统函数中的 , 即 代入 ,即得到实际滤波器传输函数。例7.1 设计一巴特沃思低通滤

8、波器,使其满足以下指标: 通带边频 ,通带的最大衰减为 ,阻带边频为 ,阻带的最小衰减为 。数字信号处理办法DigitalSignalProcessing(DSP)解:滤波器技术指标为 , , ,确定阶次N,代入式(7.2.6) 取 N=4 查表得四阶巴特沃思多项式,得归一化系统函数表 达式由式(7.2.7)得 用 替换式(7.2.8)中的s,构成巴特沃思滤波器传输函数H(s)为 数字信号处理办法DigitalSignalProcessing(DSP)3. 切比雪夫I滤波器切比雪夫I型滤波器的幅度平方函数为 (1)基本性质 是N阶切比雪夫多项式,定义为 数字信号处理办法DigitalSigna

9、lProcessing(DSP)N=0,C0(x)=1N=1, C1(x)=xN=2, C2(x)=2x2-1=2xC1(x)-C0(x)迭代公式:CN(x)=2xCN-1(x)-CN-2(x) N1N=偶数,CN(x)为偶函数 N=奇数,CN(x)为奇函数数字信号处理办法DigitalSignalProcessing(DSP)切比雪夫多项式曲线1-1xCN(x)11) x:0, 1 设:=Ncos-1x , x: 01N=0 , =0 C0(x):1N=1 , :/2 0, C1(x):01N=2 , : /2 0, C2(x):-1 01N=3 , : 3 /2 0, C2(x):0 -1

10、 01N=4 , : 2 0, C2(x):1 0 -1 012) x:1, ) x ch(ch-1x) 数字信号处理办法DigitalSignalProcessing(DSP)x=0, N=even, |CN(0)|=1, N=odd, CN(0)=0 x=1, CN(1)=1|x|1, CN(x)在-1, +1之间波动, N增加,波动次数增加|x|1, CN(x)单调上升,N增加,上升速度增加。数字信号处理办法DigitalSignalProcessing(DSP)N=3N=41c1/(1+2)数字信号处理办法DigitalSignalProcessing(DSP)切比雪夫滤波器的幅频响应

11、有如下特点: 1)0 时,曲线单调下降, 越大,N越大,曲线衰减越快。数字信号处理办法DigitalSignalProcessing(DSP)(2)设计过程 1)根据要求的滤波器指标确定波纹参数 和阶数N。 由允许的通带波纹 确定。则 滤波器的阶数N由阻带允许的衰减确定。 2)查表求得归一化传输函数 ,令 代替归一化原型滤波器系统函数中的 ,即得到实际滤波器传输函数 。数字信号处理办法DigitalSignalProcessing(DSP) 数字滤波器的单位脉冲响应序列h(n)正好等于模拟滤波器的冲激响应ha(t)的采样值,即 h(n)=ha(nT), T为采样周期.如以 Ha(s) 及 H(

12、z)分别表示 ha(t) 的拉氏变换及 h(n) 的Z变换,即数字滤波器的系统函数 便是的Z变换 。 脉冲响应不变法( Impulse Invariance ) 下面我们分析从模拟滤波器到数字滤波器S平面和Z平面之间的映射关系。 数字信号处理办法DigitalSignalProcessing(DSP)设抽样信号抽样信号的拉氏变换序列h(n)的z变换数字信号处理办法DigitalSignalProcessing(DSP)jS/2-S/23S/2ImZReZ数字信号处理办法DigitalSignalProcessing(DSP)(2) 抽样信号与原信号关系数字信号处理办法DigitalSignal

13、Processing(DSP)2.混叠失真 利用抽样序列的Z变换与模拟信号的拉普拉斯变换的关系,得 由采样定律可知,如果模拟滤波器的频率响应带限于折叠频率 以内 这时数字滤波器的频响才能不失真地重现模拟滤波器的频响(存在于折叠频率 以内)数字信号处理办法DigitalSignalProcessing(DSP) 但任何一个实际的模拟滤波器,其频率响应都不可能是严格带限的,因此不可避免地存在频谱的交叠,即产生频率响应的混叠失真。 原模拟信号的频带不是限于之间,则会在的奇数倍附近产生频率混叠,从而映射到Z平面上, 附近产生频率混叠。这种频率混叠现象会使设计出的数字滤波器在 附近的频率特性,程度不同的

14、偏离模拟滤波器在 附近的频率特性,严重时使数字滤波器不满足给定的技术指标。 数字信号处理办法DigitalSignalProcessing(DSP)解决混叠的方法:1)滤波器指标以模拟域形式给出,此时已确定,采样频率T增加,混叠减小。未确定,但已定,采样频率增加,为保证不变,必有增加,增加滤波器的阶数N,混叠2)滤波器指标以数字域形式给出,此时减小。数字信号处理办法DigitalSignalProcessing(DSP) 设模拟滤波器的系统函数若只有单阶极点,且分母的阶数高于分子阶数 NM,则可表达为部分分式形式 其拉氏反变换为 是单位阶跃函数,对ha(t)采样得到数字滤波器的单位脉冲响应序列

15、3.数字化设计数字信号处理办法DigitalSignalProcessing(DSP)再对h(n)取Z 变换,得到数字滤波器的传递函数 第二个求和为等比级数之和,要收敛的话 必有所以 数字信号处理办法DigitalSignalProcessing(DSP)例7.2 IIR低通滤波器的设计指标如下:1)通带截止频率P0.1rad, 阻带起始频率s 2)通带最大衰减p=3dB, 阻带最小衰减s=15dB4.设计举例解:1) 根据DF指标, 将DF指标转换为归一化LPF指标数字信号处理办法DigitalSignalProcessing(DSP)2) 根据归一化LPF指标, 查表求Ha(S)3) 将H

16、a(S)化成部分分式之和数字信号处理办法DigitalSignalProcessing(DSP)4) 求H(z)数字信号处理办法DigitalSignalProcessing(DSP)双线性变换法 (Bilinear Transform)1.变换原理 s平面到z平面的映射关系二次映射法 为了将S平面的j轴压缩到S1平面j1轴上的 到 一段上,可通过以下的正切变换实现: (7.2.11)这里C是待定常数,下面会讲到用不同的方法确定C 。 数字信号处理办法DigitalSignalProcessing(DSP) 当 由 时, 由 经过变化到 ,即S平面的整个 轴被压缩到S1平面的 一段.式(7.2

17、.11)又可以写成将这一关系解析扩展至整个S平面, 则得到S平面到S1平面的映射关系:再将 S1 平面通过标准变换关系映射到Z平面,即令数字信号处理办法DigitalSignalProcessing(DSP)从而得到s平面与z平面的单值映射关系 (7.2.12)数字信号处理办法DigitalSignalProcessing(DSP) 式(7.2.11)中常数的选择可以使模拟滤波器的频响特性和数字滤波器的频响特性在不同的频率范围有对应的关系,起到调节二者频带间关系的作用。选择的方法有两种。 1)使模拟滤波器和数字滤波器的频响特性在低频部分有较确切的对应关系,即当 较小时,有由此得 2)使数字滤波

18、器的某一特定频率(例如截止频率 与模拟原型滤波器的特定频率 严格对应,即数字信号处理办法DigitalSignalProcessing(DSP)由于在待定的模拟频率和待定的数字频率处频率响应应严格相等,因而可以较准确的控制截止频率位置。 数字信号处理办法DigitalSignalProcessing(DSP)j1j1S/2-S/2ImZReZ数字信号处理办法DigitalSignalProcessing(DSP)3. 模拟角频率和数字角频率的映射关系Ha(j)2数字信号处理办法DigitalSignalProcessing(DSP)总结计算H(Z)步骤如下:设给定数字低通滤波器的通带截止频率

19、、阻带截止频率 、通带波动 和阻带波动 。(1)利用公式 对通带和阻带截止频率 和 进行预畸变,求出模拟低通滤波器的通带和阻带截止频率 和 。预畸变函数式为(2)求满足指标 、 、 和 要求的模拟低通滤波器的传输函数 。(3)利用双线性变换公式 将 映射成 数字信号处理办法DigitalSignalProcessing(DSP)例7.3 设计IIR滤波器代替如下性能的模拟LPF: 1)fp=50Hz fs=125Hz 2)p3dB, s15dB 3)采样频率f=1kHz解: 1)用脉冲响应不变法 ; 2)双线性变换法数字信号处理办法DigitalSignalProcessing(DSP)(3)

20、数字带通的设计a.思路:归一化LPF模拟BPF数字BPF数字信号处理办法DigitalSignalProcessing(DSP)将代入上式数字信号处理办法DigitalSignalProcessing(DSP)归一化LPF指标为:数字信号处理办法DigitalSignalProcessing(DSP) 前面我们学习了模拟低通滤波器,数字低通滤波器的设计,对于数字高通和带阻的设计,可以借助于模拟滤波器的频率变换设计一个所需类型的模拟滤波器,再通过双线性变换将其换算成所需类型的数字滤波器。 和 分别是低通的归一化通带截止频率和归一化阻带截止频率, 和 分别是高通的归一化通带下限频率和归一化阻带上限频率。7.2.4数字高通、带通和带阻滤波器设计数字信号处理办法DigitalSignalProcessing(DSP)低通的 从 经过 和 到0时,高通的 则从0经过 和 到 ,因此 和 之间关系为 ,即是低通到高通的频率变换公式。 数字信号处理办法DigitalSignalProcessing(DSP)总结步骤为: (1)确定数字高通滤波器的技术指标 、 。(2)将数字高通滤波器的技术指标转换成高通模拟滤波器的技术指标 、 ,转换公式为 。(3)利用频率变换 将模拟高通滤波器技术指标转换成归一化模拟低通滤波器 的技术指标。(4)设计模拟低通滤波器 。(5)将模拟低通滤波器 通过频率转换转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论