版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的左右焦点分别为,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是( )A BC D2函数的大致图象为()ABCD3下列有关命题的说法正
2、确的是A“”是“”的充分不必要条件B“x=2时,x23x+2=0”的否命题为真命题C直线:,:,的充要条件是D命题“若,则”的逆否命题为真命题4设,若函数,有大于零的极值点,则( )ABCD5已知中,则B等于()AB或CD或6已知A,B是半径为的O上的两个点,1,O所在平面上有一点C满足1,则的最大值为()A1B1C21D +17已知函数,其中为自然对数的底数,若存在实数使得,则实数的值为( )ABCD8已知向量是空间的一组基底,则下列可以构成基底的一组向量是( )A,B,C,D,9已知函数是定义在上的奇函数,当时,,则( )A12B20C28D10从5个中国人、4个美国人、3个日本人中各选一
3、人的选法有( )A12种B24种C48种D60种11函数的最小正周期是,若将该函数的图象向右平移个单位长度后得到的函数图象关于点对称,则函数的解析式为ABCD12已知,则下列三个数,( )A都大于B至少有一个不大于C都小于D至少有一个不小于二、填空题:本题共4小题,每小题5分,共20分。13面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本(单位:元)的资料进行线性回归分析,得到结果如下:,则销量每增加1千箱,单位成本约下降_元(结果保留5位有效数字)附:回归直线的斜率和截距的最小二乘法公式分别为:,
4、14已知集合,若,则实数的值是_15已知直线,若与平行,则实数的值为_16人排成一排.其中甲乙相邻,且甲乙均不与丙相邻的排法共有_种三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)当a=1时,求函数f(x)的单调区间;(2)若恒成立,求b-a的最小值.18(12分)已知椭圆C:的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线相切1求椭圆C的标准方程;2设过椭圆右焦点且不重合于x轴的动直线与椭圆C相交于A、B两点,探究在x轴上是否存在定点E,使得为定值?若存在,试求出定值和点E的坐标;若不存在,请说明理由19(12分)已知函数,(其中
5、,为自然对数的底数).(1)讨论函数的单调性;(2)若分别是的极大值点和极小值点,且,求证:.20(12分)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”分数50,59)60,69)70,79)80,89)90,100甲班频数56441乙班频数13655(1)由以上统计数据填写下面22列联表,并判断“成绩优良与教学方式是否有关”?甲班乙班总计成绩优良成绩不优良总计现从上述40人中,学校按成绩是否优良采
6、用分层抽样的方法抽取8人进行考核在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望附: 临界值表21(12分)函数,.()求函数的极值;()若,证明:当时,.22(10分)在直角坐标系中,圆的方程为()以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;()直线的参数方程是(为参数),与交于两点,求的斜率参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以
7、,又因为圆与直线的切点为,所以,又,所以,因此,因此有,所以,因此渐近线的方程为.故选B【点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.2、D【解析】判断函数的奇偶性和对称性,利用的符号进行排除即可【详解】,函数是奇函数,图象关于原点对称,排除,排除,故选:【点睛】本题考查函数的图象的判断与应用,考查函数的零点以及特殊值的计算,是中档题;已知函数解析式,选择其正确图象是高考中的高频考点,主要采用的是排除法,最常见的排出方式有根据函数的定义域、值域、单调性、奇偶性、周期性等性质,同时还有在特殊点处所对应的函数值或其符号,其中包括等.3、D【解析】A选项不正确,由于
8、可得,故“”是“”的必要不充分条件;B选项不正确,“时,”的逆命题为“当时,”,是假命题,故其否命题也为假;C选项不正确,若两直线平行,则,解得;D选项正确,角相等时函数值一定相等,原命题为真命题,故其逆否命题为真,故选:D4、B【解析】试题分析:设,则,若函数在xR上有大于零的极值点即有正根,当有成立时,显然有,此时由,得参数a的范围为故选B考点:利用导数研究函数的极值5、D【解析】根据题意和正弦定理求出sinB的值,由边角关系、内角的范围、特殊角的三角函数值求出B【详解】由题意得,ABC中,a1,A30,由得,sinB,又ba,0B180,则B60或B120,故选:D【点睛】本题考查正弦定
9、理,以及边角关系的应用,注意内角的范围,属于基础题6、A【解析】先由题意得到,根据向量的数量积求出,以O为原点建立平面直角坐标系,设A(,)得到点B坐标,再设C(x,y),根据点B的坐标,根据题中条件,即可求出结果.【详解】依题意,得:,因为,所以,1,得:,以O为原点建立如下图所示的平面直角坐标系,设A(,),则B(,)或B(,)设C(x,y),当B(,)时,则(x,y)由1,得:1,即点C在1为半径的圆上,A(,)到圆心的距离为:的最大值为1当B(,)时,结论一样故选A【点睛】本题主要考查向量模的计算,熟记向量的几何意义,以及向量模的计算公式,即可求解,属于常考题型.7、C【解析】先对函数
10、求导,用导数的方法求最小值,再由基本不等式求出的最小值,结合题中条件,列出方程,即可求出结果.【详解】由得,由得;由得;因此,函数在上单调递减;在上单调递增;所以;又,当且仅当,即时,等号成立,故(当且仅当与同时取最小值时,等号成立)因为存在实数使得,所以,解得.故选C【点睛】本题主要考查导数的应用,以及由基本不等式求最小值,熟记利用导数求函数最值的方法,以及熟记基本不等式即可,属于常考题型.8、C【解析】空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明、三个选项中的向量均为共面向量,利用反证法可证明中的向量不共面【详解】解:,共面,不能构成基底,排除;,共面,不能构成基底
11、,排除;,共面,不能构成基底,排除;若、,共面,则,则、为共面向量,此与为空间的一组基底矛盾,故、,可构成空间向量的一组基底故选:【点睛】本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属于中档题.9、A【解析】先计算出的值,然后利用奇函数的性质得出可得出的值。【详解】当时,则,由于函数是定义在上的奇函数,所以,故选:A.【点睛】本题考查利用函数奇偶性求值,求函数值时要注意根据自变量的范围选择合适的解析式,合理利用奇偶性是解本题的关键,考查运算求解能力,属于基础题。10、D【解析】直接根据乘法原理得到答案.【详解】根据乘法原理,一共有种选法.故选
12、:.【点睛】本题考查了乘法原理,属于简单题.11、D【解析】先根据函数的最小正周期求出,再求出图像变换后的解析式,利用其对称中心为求出的值即得解.【详解】因为函数的最小正周期是,所以,解得.所以.将该函数的图象向右平移个单位长度后,所得图象对应的函数解析为.由题得.因为函数的解析式.故选 D.【点睛】本题主要考查三角函数的图像和性质,考查三角函数的图像变换,意在考查学生对这些知识的理解掌握水平,属于基础题.12、D【解析】分析:利用基本不等式可证明,假设三个数都小于,则不可能,从而可得结果.详解:,假设三个数都小于,则,所以假设不成立,所以至少有一个不小于,故选D.点睛:本题主要考查基本不等式
13、的应用,正难则反的思想,属于一道基础题. 反证法的适用范围:(1)否定性命题;(2)结论涉及“至多”、“至少”、“无限”、“唯一”等词语的命题;(3)命题成立非常明显,直接证明所用的理论较少,且不容易证明,而其逆否命题非常容易证明;(4)要讨论的情况很复杂,而反面情况较少二、填空题:本题共4小题,每小题5分,共20分。13、1.818 2【解析】根据所给的数据和公式可以求出回归直线方程,根据回归直线斜率的意义可以求出销量每增加1千箱,单位成本约下降多少元.【详解】由所给的数据和公式可求得:,所以线性回归方程为:,所以销量每增加1千箱,单位成本约下降元.故答案为:1.818 2【点睛】本题考查了
14、求线性回归方程,考查了直线斜率的意义,考查了数学运算能力.14、【解析】分析:根据集合包含关系得元素与集合属于关系,再结合元素互异性得结果.详解:因为,所以点睛:注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.15、【解析】根据两直线平行,列出有关的等式和不等式,即可求出实数的值.【详解】由于与平行,则,即,解得.故答案为:.【点睛】本题考查利用两直线平行求参数,解题时要熟悉两直线平行的等价条件,并根据条件列式求解,考查运算求解能力,属于基础题.16、24.【解析】分析:由题意结合排列组合的方法和计算公式整理计算即可求得
15、最终结果.详解:将甲乙捆绑后排序,有种方法,余下的丙丁戊三人排序,有种方法,甲乙均不与丙相邻,则甲乙插空的方法有2种,结合乘法原理可知满足题意的排列方法有:种.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)(2)不同元素的分配问题,往往是先分组再分配在分组时,通常有三种类型:不均匀分组;均匀分组;部分均匀分组,注意各种分组类型中,不同分组方法的求法三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)f(x)的单
16、调增区间为(e,+),减区间为(1,e);(2).【解析】分析:()求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;()由题意得,可得函数单调增区间为,减区间为,即恒成立,即,构造函数,利用导数研究函数的单调性可得,即可得的最小值.详解:()当a=1时,f(x)=(2x2+x)lnx3x22x+b(x1)f(x)=(4x+1)(lnx1),令f(x)=1,得x=ex(1,e)时,f(x)1,(e,+)时,f(x)1函数f(x)的单调增区间为(e,+),减区间为(1,e);()由题意得f(x)=(4x+1)(lnxa),(x1)令f(x)=1,得x=eax(1,
17、e a)时,f(x)1,(ea ,+)时,f(x)1函数f(x)的单调增区间为(ea,+),减区间为(1,ea)f(x)min=f(ea)=e2aea+b,f(x)1恒成立,f(ea)=e2aea+b1,则be2a+eabae2a+eaa令ea=t,(t1),e2a+eaa=t2+tlnt,设g(t)=t2+tlnt,(t1),g(t)=当t(1,)时,g(t)1,当时,g(t)1g(t)在(1,)上递减,在(,+)递增g(t)min=g()=f(x)1恒成立,ba的最小值为 点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,
18、属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.18、(1);(2)定点为.【解析】分析:(1)根据一个焦点与短轴两端点的连线相互垂直,以椭圆的长轴为直径的圆与直线相切,结合性质 ,列出关于 、 、的方程组,求出 、 、,即可得结果;(2) 设直线联立,得. 假设轴上存在定点,由韦达定
19、理,利用平面向量数量积公式可得,要使为定值,则的值与无关,所以,从而可得结果.详解:(1)由题意知,解得则椭圆的方程是(2)当直线的斜率存在时,设直线联立,得所以假设轴上存在定点,使得为定值。所以要使为定值,则的值与无关,所以解得,此时为定值,定点为当直线的斜率不存在时,也成立所以,综上所述,在轴上存在定点,使得为定值点睛:本题主要考查待定待定系数法求椭圆标准方程、圆锥曲线的定值问题以及点在曲线上问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种: 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关; 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.19、 (1)
20、见解析;(2)证明见解析【解析】(1)讨论,和三种情况,分别计算得到答案.(2)根据题意知等价于,设,计算得到使,计算得到得到证明.【详解】(1)当时,的单调递增区间是,单调递减区间是; 时, 时,由解得或;由解得,的单调递增区间是和,单调递减区间是 时,由解得;由解得或,的单调递增区间是,单调递减区间是和; 综上所述:时,单调递增区间是,单调递减区间是;时,单调递增区间是和,单调递减区间是;时,单调递增区间是,单调递减区间是和;(2)由已知和(1)得,当时满足题意,此时, ,令,则. 令则恒成立, 在上单调递增,使,即从而当时, 单调递减,当时, 单调递增,在上单调递减,即,【点睛】本题考查
21、了函数的单调性,利用导数证明不等式,将不等式等价于是解题的关键.20、(1)在犯错概率不超过0.05的前提下认为“成绩优良与教学方式有关”.(2)见解析【解析】(1)根据数据对应填写,再根据卡方公式求,最后对照参考数据作判断,(2)先根据分层抽样得成绩不优良的人数,再确定随机变量取法,利用组合数求对应概率,列表得分布列,最后根据数学期望公式求期望.【详解】解:(1)根据22列联表中的数据,得的观测值为,在犯错概率不超过0.05的前提下认为“成绩优良与教学方式有关”. (2)由表可知在8人中成绩不优良的人数为,则的可能取值为0,1,2,1 ; ; 的分布列为:所以【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年2024离婚协议书模板正本
- 合伙人拆股协议书范文模板
- 邮政供应链合作协议书范文范本
- 人教版英语八年级下册 unit 1 和unit 2期末复习
- 电力公司地震应急响应方案
- 电梯维修保养要点培训
- 新入职员工安全培训试题及答案全套
- 公司项目负责人安全培训试题及答案(基础+提升)
- 班组安全培训试题附参考答案【完整版】
- 项目部安全管理人员安全培训试题附答案(巩固)
- 外国新闻传播史 课件 第十四章 日本的新闻传播事业
- 内科学第九版糖尿病
- 2023年事业单位联考A类《综合应用能力》试题及答案
- 营养不良护理查房
- 桂林国际旅游胜地发展规划纲要解读样本
- 高考选科指导
- 广州金证研公司的笔试题
- 工程项目建设程序
- 新苏教版科学三年级上册学生活动手册答案
- 压疮用具的使用护理课件
- 临床医学概论课程研究报告
评论
0/150
提交评论