版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1圆与圆的位置关系是( )A相交B内切C外切D相离2设是两个不同的平面,是一条直线,以下命题正确的是( )A若,则
2、B若,则C若,则D若,则3己知复数z满足,则ABC5D254下列命题多面体的面数最少为4;正多面体只有5种;凸多面体是简单多面体;一个几何体的表面,经过连续变形为球面的多面体就叫简单多面体其中正确的个数为()A1B2C3D45若,则m等于( )A9B8C7D66下列选项中,说法正确的是( )A命题“”的否定是“”B命题“为真”是命题“为真”的充分不必要条件C命题“若,则”是假命题D命题“在中,若,则”的逆否命题为真命题7 “指数函数是增函数,函数是指数函数,所以函数是增函数”,以上推理( )A大前提不正确B小前提不正确C结论不正确D正确8下列说法中:相关系数用来衡量两个变量之间线性关系的强弱,
3、越接近于1,相关性越弱;回归直线过样本点中心;相关指数用来刻画回归的效果,越小,说明模型的拟合效果越不好两个模型中残差平方和越小的模型拟合的效果越好.正确的个数是( )A0B1C2D39在中,分别是内角,所对的边,若,则的形状为( )A等腰三角形B直角三角形C钝角三角形D锐角三角形10某电子管正品率为,次品率为,现对该批电子管进行测试,那么在五次测试中恰有三次测到正品的概率是( )ABCD11三棱锥的棱长全相等,是中点,则直线与直线所成角的正弦值为( )ABCD12某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜
4、采用的抽样方法是( )A抽签法B随机数法C系统抽样法D分层抽样法二、填空题:本题共4小题,每小题5分,共20分。13如图所示线路图,机器人从A地经B地走到C地,最近的走法共有_种.(用数字作答)14正方体的边长为,P是正方体表面上任意一点,集合,满足的点P在正方体表面覆盖的面积为_;15设,关于的不等式在区间上恒成立,其中,是与无关的实数,且,的最小值为1.则的最小值_.16已知抛物线,过的焦点的直线与交于,两点。弦长为,则线段的中垂线与轴交点的横坐标为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知复数为虚数单位.(1)若复数 对应的点在第四象限,求实数的取
5、值范围;(2)若,求的共轭复数.18(12分)某大学学生会为了调查了解该校大学生参与校健身房运动的情况,随机选取了100位大学生进行调查,调查结果统计如下:参与不参与总计男大学生30女大学生50总计45100(1)根据已知数据,把表格数据填写完整;(2)能否在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关?请说明理由.附:,其中.0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82819(12分)已知命题方程表示双曲线,命题点在圆的内部.若为假命题,也为假命题,求的取值范围.20(12分)已知函数.()求函数的最小正周期和单调
6、递减区间;()已知,且,求的值.21(12分)已知函数,其中为常数且,令函数(1)求函数的表达式,并求其定义域;(2)当时,求函数的值域22(10分)在中,角的对边分别.(1)求;(2)若,求的周长参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】据题意可知两个圆的圆心分别为,;半径分别为1和4;圆心距离为5,再由半径长度与圆心距可判断两圆位置关系.【详解】设两个圆的半径分别为和,因为圆的方程为与圆 所以圆心坐标为,圆心距离为5,由,可知两圆外切,故选C.【点睛】本题考查两圆的位置关系,属于基础题.2、C【解析】对于A、
7、B、D均可能出现,而对于C是正确的3、B【解析】先计算复数再计算.【详解】故答案选B【点睛】本题考查了复数的化简,复数的模,属于基础题型.4、D【解析】根据多面体的定义判断【详解】正多面体只有正四、六、八、十二、二十,所以正确表面经过连续变形为球面的多面体就叫简单多面体棱柱、棱锥、正多面体等一切凸多面体都是简单多面体所以正确故:都正确【点睛】根据多面体的定义判断5、C【解析】分析:根据排列与组合的公式,化简得出关于的方程,解方程即可.详解:,即,解得,故选C.点睛:本题主要考查排列公式与组合公式的应用问题,意在考查对基本公式掌握的熟练程度,解题时应熟记排列与组合的公式,属于简单题.6、C【解析
8、】对于A,命题“”的否定是“”,故错误;对于B,命题“为真”是命题“为真”的必要不充分条件,故错误;对于C,命题“若,则”在时,不一定成立,故是假命题,故正确;对于D,“在中,若,则或”为假命题,故其逆否命题也为假命题,故错误;故选C.7、A【解析】分析:利用三段论和指数函数的单调性分析判断.详解:由三段论可知“指数函数是增函数”是大前提,但是指数函数不一定是增函数,对于指数函数,当a1时,指数函数是增函数,当0a1时,指数函数是减函数.所以大前提不正确,故答案为:A.点睛:本题主要考查三段论和指数函数的单调性,意在考查学生对这些知识的掌握水平.8、D【解析】根据线性回归方程的性质,结合相关系
9、数、相关指数及残差的意义即可判断选项.【详解】对于,相关系数用来衡量两个变量之间线性关系的强弱,越接近于1,相关性越强,所以错误;对于,根据线性回归方程的性质,可知回归直线过样本点中心,所以正确;对于,相关指数用来刻画回归的效果,越小,说明模型的拟合效果越不好,所以正确;对于,根据残差意义可知,两个模型中残差平方和越小的模型拟合的效果越好,所以正确;综上可知,正确的为,故选:D.【点睛】本题考查了线性回归方程的性质,相关系数与相关指数的性质,属于基础题.9、B【解析】利用正弦定理和两角和的正弦化简可得,从而得到即.【详解】因为,所以,所以即,因为,故,故,所以,为直角三角形,故选B.【点睛】在
10、解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.10、D【解析】根据二项分布独立重复试验的概率求出所求事件的概率。【详解】由题意可知,五次测试中恰有三次测到正品,则有两次测到次品,根据独立重复试验的概率公式可知,所求事件的概率为,故选:D。【点睛】本题考查独立重复试验概率的计算,主要考查学生对于事件基本属性的判断以及对公式的理解,考查运算求解能力,属于基础题。11、C【解析】分析:取中点,连接 ,由三角形中位线定理可得,直线与所成的角即为直线与直线所成角,利用余弦定理及平方关系可得结果.详解: 如图,取中点,连接,分别为
11、的中点,则为三角形的中位线,直线与所成的角即为直线与直线所成角,三棱锥的棱长全相等,设棱长为,则,在等边三角形中,为的中点,为边上的高,同理可得,在三角形中,直线与直线所成角的正弦值为,故选C.点睛:本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角先要利用三角形中位线定理以及平行四边形找到,异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.12、D【解析】试题分析:由于样本中男生与女生在学习兴趣与业余爱好方面存在差异性,因此所采用的抽样方法是分层抽样法,故选D.考点:抽样方法.二、填
12、空题:本题共4小题,每小题5分,共20分。13、20【解析】分两步:第一步先计算从A到B的走法种数,第二步:再计算从B到C走法种数,相乘即可.【详解】A到B共2种走法,从B到C共种不同走法,由分步乘法原理,知从A地经B地走到C地,最近的走法共有种.故答案为:20【点睛】本题考查分步乘法原理及简单的计数问题的应用,考查学生的逻辑分析能力,是一道中档题.14、【解析】分别在六个侧面上找到满足到点的距离小于等于的点的集合,可大致分为两类;从而确定满足集合的点构成的图形,通过计算图形面积加和得到结果.【详解】在正方形、上,满足集合的点构成下图的阴影部分:在侧面、覆盖的面积:在正方形、上,满足集合的点构
13、成下图的阴影部分:在侧面、覆盖的面积:满足的点在正方体表面覆盖的面积为:本题正确结果:【点睛】本题考查立体几何中的距离类问题的应用,关键是能够通过给定集合的含义,确定在正方体侧面上满足题意的点所构成的图形,对于学生的空间想象能力有一定要求.15、【解析】化简,结合单调性及题意计算出,的表达式,由的最小值为1计算出结果【详解】因为,所以在上单调递增,又关于的不等式在上恒成立,所以,因为的最小为1,所以,即,所以,当且仅当,即时取“”,即的最小值为.【点睛】本题考查了计算最值问题,题目较为复杂,理清题意,结合函数的单调性求出最值,运用基本不等式计算出结果,紧扣题意是解题关键,考查了学生转化能力16
14、、【解析】首先确定线段AB所在的方程,然后求解其垂直平分线方程,最后确定线段的中垂线与轴交点的横坐标即可.【详解】设直线的倾斜角为,由抛物线的焦点弦公式有:,则,由抛物线的对称性,不妨取直线AB的斜率,则直线的方程为:,与抛物线方程联立可得:,由韦达定理可得:,设的中点,则,其垂直平分线方程为:,令可得,即线段的中垂线与轴交点的横坐标为.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|x1x2p,若不过焦点,则必须用一般弦长公式三、解答题:共
15、70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】试题分析:(1)求出复数的代数形式,根据第四象限的点的特征,求出的范围;(2)由已知得出 ,代入的值,求出 试题解析;(I)=, 由题意得 解得 (2) 18、(1)见解析(2)能在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关【解析】(1)根据表格内的数据计算即可. (2)将表格中的数据代入公式,计算即可求出k的取值,根据参考值得出结论.【详解】解:(1)参与不参与总计男大学生302050女大学生153550总计4555100(2)因为的观测值,所以能在犯错误的概率不超过0.005的前提下认为参与
16、校健身房运动与性别有关【点睛】本题考查列联表和独立性检验的应用,属于基础题.19、【解析】【试题分析】先分别确定命题“方程表示双曲线”中的的取值范围和“命题点在圆的内部”中的取值范围,再依据建立不等式组求解:解:因为方程,表示双曲线,故,所以或,因为点在圆的内部,故,解得:,所以,由为假命题,也为假命题知假、真,所以的取值范围为:.20、 (),;().【解析】分析:(1)根据两角和差公式将表达式化一,进而得到周期和单调区间;(2),通过配凑角得到,展开求值即可.详解:() ,令,函数的单调递减区间为.(),,,则,.点睛:这个题目考查了三角函数的化一求值,两角和差公式的化简,配凑角的应用;三角函数的求值化简,常用的还有三姐妹的应用,一般,这三者我们成为三姐妹,结合,可以知一求三.21、(1),.(2).【解析】解:(1)f(x),x0,a,(a0)(2)函数f(x)的定义域为0,令1t,则x(t1)2,t1,f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024水泥砖采购协议详细条款
- 2024年度航空运输服务协议模板
- 2024年期限室内外铺装施工协议范本
- 高等教育教材建设战略与实施步骤
- 低空经济的市场发展趋势
- 钢筋购销详细协议模板(2024年)
- 2024年纸质协议范本下载服务
- 2024年产品销售协议规范样本
- 2024水利建设施工合作具体条款协议
- 大宗货物买卖合同范本
- 实验室生物安全组织框架
- 超星尔雅学习通《海上丝绸之路》章节测试附答案
- DB42T169-2022岩土工程勘察规程
- 房颤合并心力衰竭的治疗课件
- 《建筑制图基础实训》画图大作业布置
- 优质《春天的色彩》课件
- DB4101-T 25.2-2021物业服务规范 第2部分:住宅-(高清现行)
- 我们的家园-公开课获奖课件
- 湿式电除尘器安装施工方案(推荐文档)
- 中药的发展及研究思路课件
- 总承包项目部安全风险分级管控管理办法
评论
0/150
提交评论