免疫学track课件天然免疫_第1页
免疫学track课件天然免疫_第2页
免疫学track课件天然免疫_第3页
免疫学track课件天然免疫_第4页
免疫学track课件天然免疫_第5页
已阅读5页,还剩109页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、序号教师单位授课教师授课日期授课内容1北京大学蒋争凡4.30天然免疫及其相关细胞信号转导2上海巴斯德所李斌5.7获得性免疫及免疫调节3上海巴斯德所李斌5.8代谢与免疫4北京大学医学部张毓5.14淋巴细胞发育I5北京大学医学部张毓5.15淋巴细胞发育II6中国科学院生物物理所秦志海5.21肿瘤免疫I7中国科学院生物物理所秦志海5.22肿瘤免疫II8中科院微生物研究所方敏5.28NK细胞发育与功能I9中科院微生物研究所方敏5.29NK细胞发育与功能II10北京大学医学部韩文玲6.4细胞因子11北京大学医学部韩文玲6.5免疫细胞膜分子12浙江大学鲁林荣6.11B细胞发育及其功能13浙江大学鲁林荣6.

2、12免疫耐受与自身免疫病14暨南大学尹芝南6.18T细胞免疫学15暨南大学尹芝南6.19肿瘤免疫学2014-2015学年第二学期(春季)-免疫学track课程表助教:张洁 手机: 邮箱: 天然免疫及其细胞信号转导蒋争凡 北京大学生命科学学院天然(固有)免疫获得性免疫(T、B细胞)病原微生物感染An immune system must do three things:Detect infection.Eliminate or contain infection.Be tolerant to self.The question “how do we detect infection?” turn

3、s out to be closely related to the question, “how do microbes harm us?”Infections come in all shapes and sizes, and over the history of our species, have killed more human beings than anything else.Staphylococcus aureusNeisseria meningitidisHerpes simplexVariola major(smallpox)MeaslesWhat we die of,

4、 and how long we live, depends very much on when and where we live.Courtesy J-L Casanova59 million people die eachyear of all causes, worldwide.infection accounts for about a quarter of all deaths.Infection has been a strong selective pressure throughout the evolution of our species and throughout t

5、he evolution of multicellular organismsInfection impelled the evolution of our immune systems: both innate and adaptive.Many genes have evolved or have been co-opted to serve immunity.This means that there is much that can go wrong with immunity, and many mutations lead to immunodeficiency or to aut

6、oimmunity.Major causes of death inVictorian England (1837-1901)SmallpoxTuberculosisTyphoidCholeraSarah NelmesJames PhippsEdwardJennerOn 14 May 1796, Jenner tested his hypothesis by inoculating James Phipps, an eight-year-old boy who was the son of Sarah. He scraped pus from cowpox blisters on the ha

7、nds of Sarah Nelmes, a milkmaid who had caught cowpox. This inoculation produced in Phipps a fever and some uneasiness, but no full-blown infection. Jenners Hypothesis:The cowpox, transformed from smallpox, protected milkmaids from the lethal infection of smallpox .Observation: milkmaids were genera

8、lly immune to smallpox. Jenners unique contribution was not that he inoculated person with cowpox, but that he then proved that they were immune to smallpox. Moreover, he demonstrated that the protective cowpox pus could be effectively inoculated from person to person, not just directly from cattle.

9、 Edward Jenner, FRS; (1749 1823)An English physician and scientist who was the pioneer of smallpox vaccine, the worlds first vaccine. He is often called the father of immunology, and his work is said to have saved more lives than the work of any other humanAll approaches to infection, up to this tim

10、e took place in intellectual darknessThe link between infection and microbes had yet to be made.Until it was made, there were simply vague ideas about how infections spread between individuals, and how they produced effects akin to poisoning.Miasma Contagion vs.Generally speaking, infectionresembled

11、 putrefaction oforganic materials (decayingmeat or plant matter) with theproduction of foul smellinggases such as hydrogensulfide, ammonia, mercaptans Putrescent materials of plant and animal origin are toxic when injected into animals, eliciting feverAlbrecht von Haller (1708-1777)Franois Magendie

12、(1783-1855)瑞士解剖学家、生理学家法国生理学家Attempts to purify the “putrid poison”Ernst von Bergmann(1836-1906)Theodor Billroth(1829-1894)Peter Panum(1820-1885)奥地利医生,“外科之父”德国医生,发明压力蒸汽灭菌法Joseph Lister(1827-1912)英国医生无菌术之父,发明消毒法1860无菌可吸收缝线1867The putrid poison is not volatile and is not a known simple end product of p

13、utrefaction or fermentation. It can be differentiated from living microorganisms, which may be a source but not the cause.The toxin resists heat and, thus, differs from typical enzymes (at that time called in German Fermente).It is insoluble in pure alcohol but soluble in water. The protein-like sub

14、stances frequently present in putrid fluids are not toxic by themselves, but they absorb (“condense”) the toxin on their surface when precipated. The toxic principle can be, at least partially, eluted from the precipitates.Injection of 12 mg of the concentrate suffices to produce high fever and kill

15、 a dog.-Peter Panum, 1874 (writing of his own work, performed in 1856).Peter Panum(1820-1885)丹麦医生,描述麻疹流行病的第一人Robert Koch(1843-1910)Louis Pasteur(1822-1895)At the time Panum did his work, he had no idea the “putrid poison” came from microbesFerdinand Cohn (1828 1898)Founders of bacteriology19世纪最有成就的科

16、学家之一。他的研究使整个医学迈进了细菌学时代,得到了空前的发展。美国学者麦克哈特所著的影响人类历史进程的100名人排行榜中,巴斯德名列第12位,可见其在人类历史上巨大的影响力。2005年,法国举行了“最伟大的法国人”的评选活动,巴斯德名列第二位,仅次于夏尔戴高乐。1、发酵作用是由于微菌的发展, “巴氏杀菌法”用于杀灭细菌。-自然发生论的否定2、传染病都是微菌在生物体内的发展:发现并根除了一种侵害蚕卵的细菌,拯救了法国的丝绸工业。3、染病的微菌,在特殊的培养之下可以减轻毒力,使他们从病菌变成防病的药苗。他意识到许多疾病均由微生物引起,于是建立起了细菌理论。他于1843年发表的两篇论文“双晶现象研

17、究”和“结晶形态”,开创了对物质光学性质的研究。1856年至1860年,他提出了以微生物代谢活动为基础的发酵本质新理论。1857年发表的“关于乳酸发酵的记录”是微生物学界公认的经典论文。1880年后成功地研制出鸡霍乱疫苗、狂犬病疫苗等多种疫苗,其理论和免疫法引起了医学实践的重大变革。1882年,开始研究狂犬病,证明病原体存在于患兽唾液及神经系统中,并制成咸毒活疫苗,成功地帮助人获得了该病的免疫力,在1889年发明了狂犬病疫苗。发展了一项对人进行预防接种的技术。路易斯巴斯德(1822-1895)巴氏杀菌法:6065作短时间加热处理,杀死有害微生物。罗伯特 科赫(1843-1910) 德国医生和细

18、菌学家,世界病原细菌学的奠基人和开拓者主要工作: 1876 科赫明确指出细菌是导致炭疽热这个疾病的“元凶”。科赫的研究确立了疾病的细菌起源理论。1877 第一次发明了细菌照相法。细菌干燥固定,甲基蓝染色,照相。使用盖玻片制备永久装片。 1881 第一次使用无菌的土豆片做为固体培养基,平板技术用于菌落分离细菌的纯培养。1882 分离出了结核杆菌 结核分枝杆菌,并且证实结核杆菌是这种传染病的病因。 1884 科赫提出了他最为著名的理论 “科赫原则”。 1. 在人类与动物体内结核损伤的器官中都可以发现结核杆菌的存在,而健康机体上没有。 2. 可以从患者在血清中得到结核杆菌纯培养。 3. 通过向豚鼠接

19、种结核杆菌可以让豚鼠染上结核病。4. 在患病豚鼠身上再次能够分离出结核病菌。科赫于 1905 年被授予诺贝尔医学及生理学奖。Ferdinand Cohn (1828 1898)German biologist, one of the founders of modern bacteriology and microbiology.Blue Green AlgaeCohn was the first to classify algae as plants, and to define what distinguishes them from green plants. His classific

20、ation of bacteria into four groups based on shape (sphericals, short rods, threads, and spirals) is still in use today. The first to show that Bacillus(芽孢杆菌) can change from a vegetative state to an endospore state when subjected to an environment deleterious to the vegetative state.Pfeiffer Phenome

21、non:Heat-killed V. cholerae killed guinea pigs, as did V. cholerae injected into guinea pigs that have been immunized against the microbein both cases, there is no infection per se.Pfeiffer coins the term “endotoxin” to describe the poisonous substance associated with bacteria.For Gram negative bact

22、eria, LPS is the endotoxin霍乱弧菌是革兰氏阴性菌 ,菌体弯曲呈弧状或逗点状,一端有鞭毛。霍乱弧菌,为烈性肠道传染病,在世界上发生过几次大流行。By the end of his life, Richard Pfeiffer had been nominated 33 times to receive the Nobel Prize in Physiology or Medicine.Richard Pfeiffer(1858-1945) German physician and bacteriologistWhat is the endotoxin?Bacterial

23、 Cell (E. coli)Lipopolysaccharide (Endotoxin)OuterMembranePeriplasmInnerMembraneCell Wall OrganisationLipid A StructureLipopolysaccharide (LPS) ArchitecturePPGlcNGlcNPPPKdoKdoKdoHepHepHepNH3+nCore RegionLipid AO-specific ChainPutrid poisonEndotoxinLPSHundreds of people die of endotoxin-induced shock

24、 every day, the result of severe Gram-negative bacterial infections.Endotoxic shock is a severe form of systemic inflammation.What does endotoxin do?Chronic Infectious inflammation can be manifested as wastingin chronic diseases-CachexiaAdipocyteCachectinCachectin: a postulated mediator of wasting (

25、cachexia) in chronic diseaseWhat caused the wasting?Connection between TNF & InflammationTNF affects every cell/tissue/organs during infection & inflammation!How LPS leads to the endotoxicity?Other CellsNOPAFLTKininsO2-EndotoxinOr LPSTNF(And Other Cytokines)Whats the receptor for LPS?What is the inn

26、ate immunity?How fly or drosophila survive in a very dirty environment?No adaptive immunityNo T/B cellsNo NK cellsNo AntibodyIn 1989, he predicted that activation of the adaptive immune response is controlled by the more ancient innate immune system.He proposed a general theory of innate immune reco

27、gnition (PRRs) and suggested the principles of innate control of adaptive immunity. Charles Janeway(1943-2003)One of the leading immunologists, formed many of the concepts that are the basis of immunology today. He made major contributions to our understanding of T lymphocyte biology.Most importantl

28、y, he pioneered the modern studies of innate immunity. These predictions were confirmed & now form the conceptual framework for the current understanding of the innate immune system and the links between innate and adaptive immunityPattern Recognition Receptors, PRRsPathogen-Associated Molecular Pat

29、terns, PAMPsDanger-Associated Molecular Patterns, DAMPsThe ReceptorsThe LigandsJaneways pattern recognition theoryThe Breakthrough为什么果蝇、苍蝇、蚊子等能在肮脏的环境中生活而不被感染?长满烟曲霉菌菌丝的果蝇Toll通路突变体1996, Cell, 86:973The C3H/HeJ Mouse andthe Lps LocusResistant to LPS (Heppner and Weiss, 1965)Hyper-susceptible to authent

30、ic G(-) infections (Obrien, et al., 1980; Svanborg-Eden, et al., 1983)One base-pair substitution: C to AAmino acid: P to H天然免疫基因的突变导致人类对病毒感染的抵抗能力显著下降,甚至引发死亡!Bruce A. BeutlerJules A. HoffmannRalph M. Steinman2011 Nobel Laureates1)抗感染的第一道屏障2)属应激反应,发生迅速 3) 进化上非常保守所有多细胞生物中使用的分子、通路非常保守天然免疫的特点DMTOLL1 HUMT

31、LR4LU-U73916Innate immunity is very conservedImages courtesy Dr. Pamela RonaldBacterial blight of riceXanthomonas oryzae (Xoo)水稻黄单胞菌Monocots (Rice)Insects (Drosophila)Vertebrates (Mouse)Innate immunity is very conserved固有(天然)免疫病原微生物感染诱导细胞产生炎症因子,杀死病原微生物并活化获得性免疫的反应。 固有免疫的失控导致: 1)反应不足:机体反复感染乃至死亡; 2)反应过

32、度:自身免疫病、过敏反应甚至猝死、 多器官慢性炎症反应。研究固有免疫具有重要的理论及实际意义参与天然免疫反应的细胞1)单核巨噬细胞系统: 血液单核细胞 肝脏枯否细胞(kupffer cell) 结缔组织组织细胞 骨组织破骨细胞(osteoclast ) 神经系统小胶质细胞( microglia) 脾脏、淋巴结巨噬细胞 肺肺巨噬细胞或尘细胞(dust cell) 功能:吞噬并杀死病菌,引发炎症反应。2)嗜中性粒细胞( Neutrophils ):吞噬并杀死病菌3)嗜曙红细胞( Eosinophils ):杀死蠕虫、寄生虫4)NK细胞( Natural killer cells ):杀死被感染细胞

33、,真菌和寄生虫,激活巨噬细胞5) 成纤维细胞(Fibroblast) Macrophage ingesting yeastgrowth factorTGF-、 family生长因子chemokines 1) C-X-C/亚族,趋化中性粒细胞,主要成员有: IL-8, IP-10, ENA78等; 2) C-C/亚族,趋化单核细胞,包括: 巨噬细胞炎症蛋白1 (MIP-1、), Rantes等趋化因子colony- stimulating factor G(粒细胞)-CSF、M(巨噬细胞)-CSF、GM (粒细胞、巨噬细胞) -CSF集落刺激因子tumor necrosis factor,TNF

34、肿瘤坏死因子interferon,IFN干扰素interleukins,Ils(1-37)白细胞介素参与天然免疫反应的细胞因子天然免疫反应的启动器模式识别受体TLRsTLR3,7/8,9RLRHelicaseCARDDNA/RNANucleic acidsAIM2dsDNAdsRNADAI/ZBP1dsDNAMyd88/TRIFMAVS/VISASting/MITAERISNFBIRF3/7CytokinesInflammationInflammasomeCaspase1IL-1 TLR-dependent RLR-dependent NLR-dependentNODsNLRPsIPAFNLR

35、sDAILrrfip1DDX-41IFI16天然免疫及其细胞信号转导IL-1RIL-1RAcPIL-18RSIGGIRMyD88TLR1TLR2TLR3TLR4TLR5TLR6TLR7TLR8TLR9 TIRDDIgLRRImmunoglobulin domain sub-groupLeucine-rich repeats sub-groupAdaptor sub-groupTLR/IL-1R superfamilyTollTIRAP/MalInnate immune-recognition receptorsTLR1TLR2TLR3TLR4TLR5TLR6TLR7TLR8TLR9 TIRDD

36、LRRLeucine-rich repeats sub-groupToll-Like ReceptorsTollLigands from bacteriaLPS-TLR4Flagellin-TLR5CpG-DNA-TLR9PAMPs from Gram- BacteriaStructure of Cell Wall from Gram-LTA: lipoteichoic acid-TLR2PGN: peptidoglycan-TLR2Flagellin:-TLR5 (A few Gram+ bacteria)CpG-DNA-TLR9PAMPs from Gram+ BacteriaLigand

37、s from bacteriaPGNStructure of Cell Wall from Gram+Gram+Gram-Gram+Gram-MALP2: 2-kDa macrophage-activating lipopeptide from Mycobacterium fermentansLipomannan: from Mycobacterium tuberculosisLigands from MycobacteriaLigands from YeastZymosan-TLR2/6(a beta-glucan)Ligands from VirusesCpG-DNA-TLR9dsRNA-

38、TLR3ssRNA-TLR7/8ssRNA/dsRNA-RLRsssDNA/dsDNA-cGASBoth DNA and RNA viruses vary greatly in both size and shapeTwo types of virusesSchematic drawings of viral genomes(A) Electron micrograph of an animal cell from which six copies of an enveloped virus (Semliki forest virus) are budding. (B) Schematic d

39、rawing of the envelope assembly and budding processes. The lipid bilayer that surrounds the viral capsid is derived directly from the plasma membrane of the host cell. In contrast, the proteins in this lipid bilayer (shown in green) are encoded by the viral genome.Acquisition of a viral envelopeFour

40、 virus uncoating strategies10 TLRs in Human, 11 in mouseNFBTLR signalingReceptorAdapterKinaseKinaseTranscription factorCytokinesIKK /TAK1TLRsMyD88IRAKTRAF6IRAK4MyD88TRAF6IRAKIRAK4IKKIKKIKKNFBTAK1Proinflammatory cytokines & chemokinesMyD88-dependentTLR2/1TLR2/6TIRAPMyD88 Pam3-CysMALP-2LTAZymosan TLR5

41、/7/8/9MyD88IKKIKKIKKNFBTRIFIRF3/7TBK1IKKiTRAF6TRAF3TAK1Type I-IFNProinflammatory cytokines & chemokinesTLR3MyD88-independentTRIF/LPS2TLR4 LPSTIRAPMyD88TRAF6IRAKIRAK4IKKIKKIKKNFBTAK1 LPSTRAMIRF3/7TBK1IKKiTRAF6TRAF3Type I-IFNLate activationProinflammatory cytokines & chemokinesMyD88-dependent and inde

42、pendentTRIFMyD88TRIF/LPS2TAK1TAB1TAB2TAK1MyD88PPTRAF6IRAKIRAK4IRAKTRAF6PPTAB1TAB2TAK1TRAF6IRAKPPUUNFBIKK /Complex IComplex IIComplex IIIThe complex regulation of TLR signalingNucleic acid-induced Innate ImmunityTLR3,7/8,9RLRHelicaseCARDDNA/RNAsAIM2dsDNAdsRNA5-pp-ssRNAMyd88/TRIFMAVS/VISASting/MITAERI

43、SNFBIRF3/7InflammasomedsDNAssDNATLR3: dsRNATLR7/8: ssRNATLR9: CpGDNAIntracellularAll viruses were detected by its genomic DNA/RNAsTakeuchi & Akira, 2010, CellTLR7/9ssRNA & CpG-DNATakeuchi & Akira, 2010, CellRLH dependent:Innate immunity to cytosolic Nucleic Acids from microbesNFBIRF3/7CARDRLRsHelica

44、seCARDCARDMAVSRNATBK1IKKiIKK/MitHow cytoplasmic DNA activates innate immunity?IRF3/7TBK1IKKiDNAIFI16DDX41cGASATP+GTPERSTINGNew pathwayOld pathwayThe most exciting findingin 2013: cGAMPs are ligands activating STINGDNAIFI16DDX41cGASATP+GTPcGAMPIRF3/7STINGCyclic di-nucleotides cGAMP: cyclic GMP-AMPJam

45、es Zhijian Chen(陈志坚)c-di-GMPc-di-AMPc-GAMPs(c-GMP-AMP)Cyclic di-nucleotides: New 2nd messengers, all activate innate immunityCyclic GMP-AMPs 22-cGAMP23-cGAMP32-cGAMP33-cGAMP 33-cGAMP 23-cGAMP32GMPAMPGMPAMPBackgroundDncVATP+GTP33-cGAMP InfectivityChemotaxis&Colonization12PDEs for c-di-GMP or c-di-AMP

46、 were identifiedWhat is the phosphodiesterase (PDE) that degrades cGAMP?STING + DncVIFN activation (fold)*Identification of a PDE candidate that inhibits DncV-induced IFN up-regulationHD-GYPHD-GYPHD-GYPHD-GYPHD-GYPHD-GYPHD-GYPHD-GYPHD-GYPAmong 9 HD-GYP proteins, 3 inhibit 33-cGAMPV. cholerae c-GAMP

47、phosphodiesterase, V-cGAP1/2/3123456789VCA0681VC2340VC1348VC1295VCA0931VC2497VCA0895ConVC1081VCA0210(226-458aa)(50-982aa)33-cGAMPVCA0681VC2340VC1348VC1295VCA0931VC2497VCA0895ControlVCA021033-cGAMPVC108133-cGAMPP1P2GAPDHp-IRF3DncVATP+GTPV-cGAP1V-cGAP15-pApGV-cGAP15-ApGV-cGAP1V-cGAP1 degrades 33- cGAMP to 5-ApG via the intermediate 5-pApGP1P2(PDEs)(5-nucleotidases)TLRsTLR3,7/8,9RLRHelicaseCARDDNA/RNANucleic acidsAIM2dsDNAdsRNAMyd88/TRIFMAVS

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论