贵州省黔东南州名校2023学年高三3月份模拟考试数学试题(含解析)_第1页
贵州省黔东南州名校2023学年高三3月份模拟考试数学试题(含解析)_第2页
贵州省黔东南州名校2023学年高三3月份模拟考试数学试题(含解析)_第3页
贵州省黔东南州名校2023学年高三3月份模拟考试数学试题(含解析)_第4页
贵州省黔东南州名校2023学年高三3月份模拟考试数学试题(含解析)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知角的终边经过点,则ABCD2已知过点且与曲线相切的直线的条数有( )A0B1C2D33函数在内有且只有一个零点,则a的值为( )A3B3C2D24设i是虚数单位,若复数是纯虚数,则a

2、的值为( )AB3C1D5在中,点D是线段BC上任意一点,则( )AB-2CD26本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )A72种B144种C288种D360种7在正方体中,分别为,的中点,则异面直线,所成角的余弦值为( )ABCD8若单位向量,夹角为,且,则实数( )A1B2C0或1D2或19设,是两条不同的直线,是两个不同的平面,下列命题中正确的是( )A若,则B若,则C若,则D若,则10已知复数是正实数,则实数的值为( )ABCD11等比数列若则( )A6B6C-6

3、D12已知集合,集合,那么等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列是各项均为正数的等比数列,若,则的最小值为_.14已知向量,且向量与的夹角为_.15设向量,且,则_.16若将函数的图象沿轴向右平移个单位后所得的图象与的图象关于轴对称,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的左焦点坐标为,分别是椭圆的左,右顶点,是椭圆上异于,的一点,且,所在直线斜率之积为.(1)求椭圆的方程;(2)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若

4、不是,请说明理.18(12分)某景点上山共有级台阶,寓意长长久久甲上台阶时,可以一步走一个台阶,也可以一步走两个台阶,若甲每步上一个台阶的概率为,每步上两个台阶的概率为为了简便描述问题,我们约定,甲从级台阶开始向上走,一步走一个台阶记分,一步走两个台阶记分,记甲登上第个台阶的概率为,其中,且(1)若甲走步时所得分数为,求的分布列和数学期望;(2)证明:数列是等比数列;(3)求甲在登山过程中,恰好登上第级台阶的概率19(12分)设函数f(x)=x24xsinx4cosx (1)讨论函数f(x)在,上的单调性;(2)证明:函数f(x)在R上有且仅有两个零点20(12分)已知矩阵,.求矩阵;求矩阵的

5、特征值.21(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.22(10分)已知函数,曲线在点处的切线方程为.()求,的值;()若,求证:对于任意,.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】因为角的终边经过点,所以,则,即.故选D2、C【答案解析】设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程【题目详解】若直线与曲线切于点,则,又,解得,过点与曲线相切的直线方程为或,故选

6、C【答案点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题3、A【答案解析】求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【题目详解】,若,在单调递增,且,在不存在零点;若,在内有且只有一个零点,.故选:A.【答案点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.4、D【答案解析】整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【题目详解】由题,因为纯虚数,所以,则,故

7、选:D【答案点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.5、A【答案解析】设,用表示出,求出的值即可得出答案.【题目详解】设由,.故选:A【答案点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.6、B【答案解析】利用分步计数原理结合排列求解即可【题目详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【答案点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题7、D【答案解析】连接,因为

8、,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【题目详解】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,则,在等腰中,取的中点为,连接,则,所以,即:,所以异面直线,所成角的余弦值为.故选:D.【答案点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.8、D【答案解析】利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【题目详解】由于,所以,即,即,解得或.故选:D【答案点睛】本小题主要考查向量模的运算,考查向量数量积的运算,

9、属于基础题.9、D【答案解析】试题分析:,,故选D.考点:点线面的位置关系.10、C【答案解析】将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【题目详解】因为为正实数,所以且,解得.故选:C【答案点睛】本题考查复数的基本定义,属基础题.11、B【答案解析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【题目详解】由等比数列中等比中项性质可知,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【答案点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.12、A【答案解析】求出集合,然后进行并集的运算即可.【题目详解】,.故选:A.【

10、答案点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、40【答案解析】设等比数列的公比为,根据,可得,因为,根据均值不等式,即可求得答案.【题目详解】设等比数列的公比为,等比数列的各项为正数,当且仅当,即时,取得最小值.故答案为:.【答案点睛】本题主要考查了求数列值的最值问题,解题关键是掌握等比数列通项公式和灵活使用均值不等式,考查了分析能力和计算能力,属于中档题.14、1【答案解析】根据向量数量积的定义求解即可【题目详解】解:向量,且向量与的夹角为,|;所以:()2cos221,故答案为:1【答案点睛】本题主

11、要考查平面向量的数量积的定义,属于基础题15、【答案解析】根据向量的数量积的计算,以及向量的平方,简单计算,可得结果.【题目详解】由题可知:且由所以故答案为:【答案点睛】本题考查向量的坐标计算,主要考查计算,属基础题.16、【答案解析】由题意利用函数的图象变换规律,三角函数的图像的对称性,求得的最小值.【题目详解】解:将函数的图象沿轴向右平移个单位长度,可得的图象.根据图象与的图象关于轴对称,可得,即时,的最小值为.故答案为:.【答案点睛】本题主要考查函数的图象变换规律,正弦函数图像的对称性,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线过定点

12、【答案解析】(1),再由,解方程组即可;(2)设,由,得,由直线MN的方程与椭圆方程联立得到根与系数的关系,代入计算即可.【题目详解】(1)由题意知:,又,且解得,椭圆方程为,(2)当直线的斜率存在时,设其方程为,设,由,得.则,(*)由,得,整理可得(*)代入得,整理可得,又,即,直线过点当直线的斜率不存在时,设直线的方程为,其中,由,得,所以当直线的斜率不存在时,直线也过定点综上所述,直线过定点.【答案点睛】本题考查求椭圆的标准方程以及直线与椭圆位置关系中的定点问题,在处理直线与椭圆的位置关系的大题时,一般要利用根与系数的关系来求解,本题是一道中档题.18、见解析【答案解析】(1)由题可得

13、的所有可能取值为,且,所以的分布列为所以的数学期望(2)由题可得,所以,又,所以,所以是以为首项,为公比的等比数列(3)由(2)可得19、见解析【答案解析】(1)f(x)=2x4xcosx4sinx+4sinx=, 由f(x)=1,x,得x=1或或当x变化时,f(x)和f(x)的变化情况如下表:x1f(x)1+11+f(x)单调递减极小值单调递增极大值单调递减极小值单调递增所以f(x)在区间,上单调递减,在区间,上单调递增(2)由(1)得极大值为f(1)=4;极小值为f()=f()f(1)1,所以f(x)在,上各有一个零点 显然x(,2)时,4xsinx1,x24cosx1,所以f(x)1;x

14、2,+)时,f(x)x24x462464=81, 所以f(x)在(,+)上没有零点因为f(x)=(x)24(x)sin(x)4cos(x)=x24xsinx4cosx=f(x),所以f(x)为偶函数,从而x1,即f(x)在(,)上也没有零点故f(x)仅在,上各有一个零点,即f(x)在R上有且仅有两个零点20、;,.【答案解析】由题意,可得,利用矩阵的知识求解即可.矩阵的特征多项式为,令,求出矩阵的特征值.【题目详解】设矩阵,则,所以,解得,所以矩阵;矩阵的特征多项式为,令,解得,即矩阵的两个特征值为,.【答案点睛】本题考查矩阵的知识点,属于常考题.21、(1)当时,在上单调递减,在上单调递增;

15、当时, 在上单调递增;(2).【答案解析】(1)求出函数的定义域和导函数, ,对讨论,得导函数的正负,得原函数的单调性;(2)法一: 由得,分别运用导函数得出函数(),的单调性,和其函数的最值,可得 ,可得的范围;法二:由得,化为令(),研究函数的单调性,可得的取值范围.【题目详解】(1)的定义域为,当时,由得,得, 在上单调递减,在上单调递增;当时,恒成立,在上单调递增;(2)法一: 由得,令(),则,在上单调递减,即,令,则,在上单调递增,在上单调递减,所以,即, (*)当时,(*)式恒成立,即恒成立,满足题意法二:由得,令(),则,在上单调递减,即,当时,由()知在上单调递增,恒成立,满足题意当时,令,则,所以在上单调递减,又,当时,使得,当时,即,又,不满足题意,综上所述,的取值范围是【答案点睛】本题考查对于含参数的函数的单调性的讨论,不等式恒成立时,求解参数的范围,属于难度题.22、(),()见解析【答案解析】(1)根据导数的运算法则,求出函数的导数,利用切线方程求出切线的斜率及切点,利用函数在切点处的导数值为曲线切线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论