




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、福建省泉州市晋江市泉州五中学桥南校区2023学年初中数学毕业考试模拟冲刺卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列各组数中,互为相反数的是()A1与(1)2B(1)2与1C2与D2与|2|2将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4
2、)2+5Cy=(x8)2+3Dy=(x4)2+33对于一组统计数据1,1,6,5,1下列说法错误的是()A众数是1B平均数是4C方差是1.6D中位数是64如图,正六边形ABCDEF中,P、Q两点分别为ACF、CEF的内心若AF=2,则PQ的长度为何?()A1B2C22D425在平面直角坐标系中,若点A(a,b)在第一象限内,则点B(a,b)所在的象限是()A第一象限 B第二象限 C第三象限 D第四象限6在下列四个标志中,既是中心对称又是轴对称图形的是()ABCD7在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球则两次摸出的小球
3、的标号的和等于6的概率为()ABCD8cos60的值等于( )A1BCD9如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()ABCD10点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1x20 x3,则y1,y2,y3的大小关系是()Ay1y2y3By2y3y1Cy3y2y1Dy2y1y3二、填空题(共7小题,每小题3分,满分21分)11点(a1,y1)、(a1,y2)在反比例函数y(k0)的图象上,若y1y2,则a的范围是_12如图,已知RtABC中,B=90,A=60,AC=2+4,点M、N分别在线段
4、AC、AB上,将ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当DCM为直角三角形时,折痕MN的长为_13对角线互相平分且相等的四边形是()A菱形B矩形C正方形D等腰梯形14如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E则四边形AECF的面积是 15如图,一名滑雪运动员沿着倾斜角为34的斜坡,从A滑行至B,已知AB500米,则这名滑雪运动员的高度下降了_米(参考数据:sin340.56,cos340.83,tan340.67)16如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90的扇形
5、,将剪下的扇形围成一个圆锥,圆锥的高是_m17如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(),D是AB边上的一点将ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_三、解答题(共7小题,满分69分)18(10分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作P,则称点Q为P的“关联点”,P为点Q的“关联圆”(1)已知O的半径为1,在点E(1,1),F(,),M(0,-1)中,O的“关联点”为_;(2)若点P(2,0),点Q(3,n),Q为点P的“关联圆”,且Q的半径为,求n的值;(3)已
6、知点D(0,2),点H(m,2),D是点H的“关联圆”,直线yx+4与x轴,y轴分别交于点A,B若线段AB上存在D的“关联点”,求m的取值范围19(5分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,EAC=130,求水坝原来的高度BC(参考数据:sin500.77,cos500.64,tan501.2)20(8分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O连接OA、OB、OC、ODOE是边CD的中线,且AOB+COD180(1)如图2,当A
7、BO是等边三角形时,求证:OEAB;(2)如图3,当ABO是直角三角形时,且AOB90,求证:OEAB;(3)如图4,当ABO是任意三角形时,设OAD,OBC,试探究、之间存在的数量关系?结论“OEAB”还成立吗?若成立,请你证明;若不成立,请说明理由21(10分)如图,AD是O的直径,AB为O的弦,OPAD,OP与AB的延长线交于点P,过B点的切线交OP于点C求证:CBP=ADB若OA=2,AB=1,求线段BP的长.22(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程该项绿化工程原
8、计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23(12分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.24(14分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作
9、DA的平行线与AF相交于点F,已知,求AD的长;求证:FC是的切线2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【答案解析】根据相反数的定义,对每个选项进行判断即可.【题目详解】解:A、(1)21,1与1 互为相反数,正确;B、(1)21,故错误;C、2与互为倒数,故错误;D、2|2|,故错误;故选:A【答案点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.2、D【答案解析】直接利用配方法将原式变形,进而利用平移规律得出答案【题目详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=
10、(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【答案点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键3、D【答案解析】根据中位数、众数、方差等的概念计算即可得解.【题目详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2= (14)2+(14)2+(64)2+(54)2+(14)2=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D考点:1.众数;2.平均数;
11、1.方差;4.中位数.4、C【答案解析】先判断出PQCF,再求出AC=2,AF=2,CF=2AF=4,利用ACF的面积的两种算法即可求出PG,然后计算出PQ即可.【题目详解】解:如图,连接PF,QF,PC,QCP、Q两点分别为ACF、CEF的内心,PF是AFC的角平分线,FQ是CFE的角平分线,PFC=AFC=30,QFC=CFE=30,PFC=QFC=30,同理,PCF=QCFPQCF,PQF是等边三角形,PQ=2PG;易得ACFECF,且内角是30,60,90的三角形,AC=2,AF=2,CF=2AF=4,SACF=AFAC=22=2,过点P作PMAF,PNAC,PQ交CF于G,点P是AC
12、F的内心,PM=PN=PG,SACF=SPAF+SPAC+SPCF=AFPM+ACPN+CFPG=2PG+2PG+4PG=(1+2)PG=(3+)PG=2,PG=,PQ=2PG=2()=2-2.故选C.【答案点睛】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.5、D【答案解析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】点A(a,-b)在第一象限内,a0,-b0,b0,点B(a,b)在第四象限,故选D【答案点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号
13、特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负6、C【答案解析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解【题目详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【答案点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合7、C【答案解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况
14、数占总情况数的多少即可解:共16种情况,和为6的情况数有3种,所以概率为故选C8、A【答案解析】根据特殊角的三角函数值直接得出结果.【题目详解】解:cos60=故选A.【答案点睛】识记特殊角的三角函数值是解题的关键.9、D【答案解析】分析:根据相似三角形的性质进行解答即可详解:在平行四边形ABCD中,AECD, EAFCDF, AFBC,EAFEBC, 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.10、D【答案解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1x20 x1,判断出三点所在的象限,再根据函数的增减性即可得出结论【题目详解】反比例函数y=
15、中,k=10,此函数图象的两个分支在一、三象限,x1x20 x1,A、B在第三象限,点C在第一象限,y10,y20,y10,在第三象限y随x的增大而减小,y1y2,y2y1y1故选D【答案点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键二、填空题(共7小题,每小题3分,满分21分)11、1a1【答案解析】解:k0,在图象的每一支上,y随x的增大而减小,当点(a-1,y1)、(a+1,y2)在图象的同一支上,y1y2,a-1a+1,解得:无解;当点(a-1,y1)、(a+1,y2)在图象的两支上,y1y2,a-10,a+10,解得
16、:-1a1故答案为:-1a1【答案点睛】本题考查反比例函数的性质12、或【答案解析】分析:依据DCM为直角三角形,需要分两种情况进行讨论:当CDM=90时,CDM是直角三角形;当CMD=90时,CDM是直角三角形,分别依据含30角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长详解:分两种情况:如图,当CDM=90时,CDM是直角三角形,在RtABC中,B=90,A=60,AC=2+4,C=30,AB=AC=+2,由折叠可得,MDN=A=60,BDN=30,BN=DN=AN,BN=AB=,AN=2BN=,DNB=60,ANM=DNM=60,AMN=60,AN=MN=;如图,当C
17、MD=90时,CDM是直角三角形,由题可得,CDM=60,A=MDN=60,BDN=60,BND=30,BD=DN=AN,BN=BD,又AB=+2,AN=2,BN=,过N作NHAM于H,则ANH=30,AH=AN=1,HN=,由折叠可得,AMN=DMN=45,MNH是等腰直角三角形,HM=HN=,MN=,故答案为:或点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等13、B【答案解析】根据平行四边形的判定与矩形的判定定理,即可求得答案【题目详解】对角线互相平分的四边形是
18、平行四边形,对角线相等的平行四边形是矩形,对角线相等且互相平分的四边形一定是矩形故选B【答案点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理此题比较简单,解题的关键是熟记定理14、1【答案解析】四边形ABCD为正方形,D=ABC=90,AD=AB,ABE=D=90,EAF=90,DAF+BAF=90,BAE+BAF=90,DAF=BAE,AEBAFD,SAEB=SAFD,它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=115、1【答案解析】测试卷解析:在RtABC中,sin34=AC=ABsin34=5000.56=1米.故答案为1.16、【答案解析】分析
19、:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可详解:如图1,连接AO,AB=AC,点O是BC的中点,AOBC,又 弧BC的长为:(m),将剪下的扇形围成的圆锥的半径是:(m),圆锥的高是: 故答案为.点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.17、-12【答案解析】过E点作EFOC于F,如图所示:由条件可知:OE=OA=5,所以EF=3,OF=4,则E点坐标为(-4,3)设反比例函数的解析式是y,则有k=-43=-12.故答案是:-12.三、解答题(
20、共7小题,满分69分)18、(1)F,M;(1)n1或1;(3)m或 m【答案解析】(1)根据定义,认真审题即可解题,(1)在直角三角形PHQ中勾股定理解题即可,(3)当D与线段AB相切于点T时,由sinOBA=,得DTDH1,进而求出m1=即可,当D过点A时,连接AD由勾股定理得DADH1即可解题.【题目详解】解:(1)OFOM1,点F、点M在上,F、M是O的“关联点”,故答案为F,M(1)如图1,过点Q作QHx轴于HPH1,QHn,PQ.由勾股定理得,PH1+QH1PQ1,即11+n1=()1,解得,n1或1(3)由yx+4,知A(3,0),B(0,4)可得AB5如图1(1),当D与线段A
21、B相切于点T时,连接DT则DTAB,DTB90sinOBA=,可得DTDH1,m1=,如图1(1),当D过点A时,连接AD由勾股定理得DADH1综合可得:m或 m【答案点睛】本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.19、水坝原来的高度为12米【答案解析】测试卷分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可测试卷解析:设BC=x米,在RtABC中,CAB=180EAC=50,AB=,在RtEBD中,i=DB:EB=1:1,BD=BE,CD+BC=AE+AB,即2+x=4+,解得x
22、=12,即BC=12,答:水坝原来的高度为12米.考点:解直角三角形的应用,坡度.20、(1)详见解析;(2)详见解析;(3)+90;成立,理由详见解析【答案解析】(1)作OHAB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明OCEOBH,根据全等三角形的性质证明;(2)证明OCDOBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;(3)根据等腰三角形的性质、三角形内角和定理计算;延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明【题目详解】(1)作OHAB于H,AD、BC的垂直平分线相交于点O,OD=OA,OB
23、=OC,ABO是等边三角形,OD=OC,AOB=60,AOB+COD180COD=120,OE是边CD的中线,OECD,OCE=30,OA=OB,OHAB,BOH=30,BH=AB,在OCE和BOH中,OCEOBH,OE=BH,OE=AB;(2)AOB=90,AOB+COD=180,COD=90,在OCD和OBA中, ,OCDOBA,AB=CD,COD=90,OE是边CD的中线,OE=CD,OE=AB;(3)OAD=,OA=OD,AOD=1802,同理,BOC=1802,AOB+COD=180,AOD+COB=180,1802+1802=180,整理得,+=90;延长OE至F,使EF=OE,连
24、接FD、FC,则四边形FDOC是平行四边形, OCF+COD=180,AOB=FCO,在FCO和AOB中,FCOAOB,FO=AB,OE=FO=AB【答案点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键21、(1)证明见解析;(2)BP=1.【答案解析】分析:(1)连接OB,如图,根据圆周角定理得到ABD=90,再根据切线的性质得到OBC=90,然后利用等量代换进行证明;(2)证明AOPABD,然后利用相似比求BP的长详(1)证明:连接OB,如图,AD是O的直径,ABD=90,A+ADB=90,BC为切线,OBBC,OBC=90,OBA+CBP=90,而OA=OB,A=OBA,CBP=ADB;(2)解:O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 死亡补偿协议书格式
- 正式商铺租房合同协议
- 向个人收购木材合同协议
- 毕业同学就业协议书模板
- 苗木销售授权协议
- 商厦物业合同协议
- 商场卖家具合同协议
- 江苏省无锡市洋溪中学2025年初三下学期期中联考语文试题理试题含解析
- 商业街经营合同协议
- 正规劳动聘用合同协议
- 专题09 乡村和城镇-五年(2019-2023)高考地理真题分项汇编(解析版)
- 2025年第三届天扬杯建筑业财税知识竞赛题库附答案(201-300题)
- T-NKFA 015-2024 中小学午休课桌椅
- 课题开题报告:推进家校社协同育人研究
- 拒绝校园霸凌守护美好校园
- 2025春新七年级道德与法治下册全册知识点
- Unit 9 Active learning 教学设计-2023-2024学年高中英语北师大版(2019)必修第三册
- 渔场基地建设实施方案
- 《食源性病原体》课件
- 《药品泡罩包装应用指南(征求意见稿)》
- Unit 6 Beautiful landscapes Integration 说课稿 -2024-2025学年译林版英语七年级下册001
评论
0/150
提交评论