版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则()ABCD2在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,浙江大学1名,并且清华大学和北京大学都要求必须有男生参加,学校通过选拔定下
2、3男2女共5个推荐对象,则不同的推荐方法共有( )A36种B24种C22种D20种3命题“,使得”的否定形式是( )A,使得B,使得C,使得D,使得4椭圆的长轴长为( )A1B2CD45下列关于正态分布的命题:正态曲线关于轴对称;当一定时,越大,正态曲线越“矮胖”,越小,正态曲线越“瘦高”;设随机变量,则的值等于2;当一定时,正态曲线的位置由确定,随着的变化曲线沿轴平移.其中正确的是( )ABCD6已知,若、三向量共面,则实数等于( )ABCD7给出下列四个说法:命题“,都有”的否定是“,使得”;已知、,命题“若,则”的逆否命题是真命题;是的必要不充分条件;若为函数的零点,则.其中正确的个数为
3、( )ABCD8过抛物线的焦点F的直线交抛物线于A、B两点,若,则()AB1CD29已知集合Mx|(x1)24,xR,N1,0,1,2,3,则MN( )A0,1,2B1,0,1,2C1,0,2,3D0,1,2,310已知椭圆的左右焦点分别,焦距为4,若以原点为圆心,为直径的圆恰好与椭圆有两个公共点,则此椭圆的方程为( )ABCD11已知函数.若不等式的解集中整数的个数为,则的取值范围是( )ABCD12如图,在三棱锥中,点D是棱的中点,若,则等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若复数满足,则的最大值是_14已知集合,若,则实数的取值范围是_.15已知,则_.1
4、6已知为偶函数,当时,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种其中某班级学生背诵正确的概率,记该班级完成首背诵后的总得分为.(1)求且的概率;(2)记,求的分布列及数学期望18(12分)求函数的单调区间.19(12分)如图所示,已知是椭圆:的右焦点,直线:与椭圆相切于点(1)若,求;(2)若,求椭圆的标准方程20(12分)已知函数.()求曲线在点处的切线方程;()求函数的极值.21(12分)在中,角,
5、所对的边分别为,已知(1)求角;(2)若,求的面积22(10分)如图,在空间几何体中,四边形是边长为2的正方形,()求证:平面;()求直线与平面所成角的正弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】通过分段法,根据指数函数、对数函数和三角函数的性质,判断出,由此选出正确结论.【详解】解:,;.故选C.【点睛】本小题主要考查利用对数函数、指数函数和三角函数的性质比较大小,考查分段法比较大小,属于基础题.2、B【解析】根据题意,分2种情况讨论:、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,
6、共有=12种推荐方法;、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法,故选B3、D【解析】试题分析:的否定是,的否定是,的否定是故选D【考点】全称命题与特称命题的否定【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题对含有存在(全称)量词的命题进行否定需要两步操作: 将存在(全称)量词改成全称(存在)量词;将结论加以否定4、D【解析】由椭圆方程得出即可【详解】由可得,即所以长轴长为故选:D【点睛】本题考查的是由椭圆的方程得长轴长,较简单5、C【解析】分析:根据正态分布的定义,及正态分布与各参数
7、的关系结合正态曲线的对称性,逐一分析四个命题的真假,可得答案详解:正态曲线关于轴对称,故不正确,当一定时,越大,正态曲线越“矮胖”,越小,正态曲线越“瘦高”;正确;设随机变量,则的值等于1;故不正确;当一定时,正态曲线的位置由确定,随着的变化曲线沿轴平移.正确.故选C.点睛:本题以命题的真假判断为载体考查了正态分布及正态曲线,熟练掌握正态分布的相关概念是解答的关键6、C【解析】由题知,、 三个向量共面,则存在常数,使得,由此能求出结果.【详解】因为,且、三个向量共面,所以存在使得.所以 ,所以 ,解得 .故选:C.【点睛】本题主要考查空间向量共面定理求参数,还运用到向量的坐标运算.7、C【解析
8、】根据全称命题的否定可判断出命题的真假;根据原命题的真假可判断出命题的真假;解出不等式,利用充分必要性判断出命题的真假;构造函数,得出,根据零点的定义和函数的单调性来判断命题的正误.【详解】对于命题,由全称命题的否定可知,命题为假命题;对于命题,原命题为真命题,则其逆否命题也为真命题,命题为真命题;对于命题,解不等式,得或,所以,是的充分不必要条件,命题为假命题;对于命题,函数的定义域为,构造函数,则函数为增函数,又,为函数的零点,则,则,命题为真命题.故选:C.【点睛】本题考查命题真假的判断,涉及命题的否定,四种命题的关系,充分必要的判断以及函数的零点,考查推理能力,属于中等题.8、C【解析
9、】根据抛物线的定义,结合,求出A的坐标,然后求出AF的方程求出B点的横坐标即可得到结论【详解】抛物线的焦点F(1,0),准线方程为,设A(x,y),则,故x=4,此时y=4,即A(4,4),则直线AF的方程为,即,代入得,解得x=4(舍)或,则,故选:C【点睛】本题主要考查抛物线的弦长的计算,根据抛物线的定义是解决本题的关键一般和抛物线有关的小题,可以应用结论来处理;平时练习时应多注意抛物线的结论的总结和应用。尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化。9、A【解析】试题分析:求出集合M中不等式的解集,确定出M,找出M与N的公共元素,即可确定出两集合的交集解:由(x1)
10、24,解得:1x3,即M=x|1x3,N=1,0,1,2,3,MN=0,1,2故选A点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键10、A【解析】已知,又以原点为圆心,为直径的圆恰好与椭圆有两个公共点,这两个公共点只能是椭圆短轴的顶点,从而有,于是可得,从而得椭圆方程。【详解】以原点为圆心,为直径的圆恰好与椭圆有两个公共点,这两个公共点只能是椭圆短轴的顶点,又即,椭圆方程为。故选:A。【点睛】本题考查椭圆的标准方程,解题关键时确定的值,本题中注意椭圆的对称轴,从而确定关系。11、D【解析】对进行变形,得到,令,即的整数个数为3,再由的函数图像和的函数图像,写出限制条件,得到答案
11、【详解】,即设,其中时,时,即符合要求,所以时,单调递减,单调递增,为极小值.有三个整数解,则还有一个整数解为或者是当解集包含时,时,所以需要满足即,解得当解集包含时,需要满足即整理得,而,所以无解集,即该情况不成立.综上所述,由得,的范围为故选D项.【点睛】利用导数研究函数图像,两个函数图像的位置关系与解析式大小之间的关系,数形结合的数学思想,题目较综合,考查内容比较多,属于难题.12、A【解析】利用向量的三角形法则,表示所求向量,化简求解即可【详解】解:由题意在三棱锥中,点是棱的中点,若,可知:,故选:【点睛】本题考查向量的三角形法则,空间向量与平面向量的转化,属于基础题二、填空题:本题共
12、4小题,每小题5分,共20分。13、【解析】利用复数模的三角不等式可得出可得出的最大值.【详解】由复数模的三角不等式可得,因此,的最大值是.故答案为.【点睛】本题考查复数模的最值的计算,可将问题转化为复平面内复数对应的点的轨迹,利用数形结合思想求解,同时也可以利用复数模的三角不等式进行计算,考查分析问题和解决问题的能力,属于中等题.14、【解析】根据,确定参数的取值范围.【详解】若满足,则.故答案为:【点睛】本题考查根据集合的包含关系,求参数的取值范围,属于简单题型.15、【解析】将分子化为,然后在分式的分子和分母中同时除以,利用弦化切的思想进行计算.【详解】,故答案为.【点睛】本题考查利用弦
13、化切思想进行求值,弦化切一般适用于以下两种情况:(1)分式是关于角的次分式齐次式,在分式的分子和分母中同时除以,可将分式化为切的代数式进行计算;(2)角弦的二次整式,先除以,将代数式化为角的二次分式齐次式,然后在分式的分子和分母中同时除以,可将代数式化为切的代数式进行计算.16、【解析】由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1);(2) 分布列见解析,.【解析】(1)由知,背诵6首,正确4首,错误2首,又,所以第一首一定背诵正确,由此求出对应的概率;(2)
14、根据题意确定的取值,计算相对应的概率值,写出的分布列,求出数学期望【详解】(1)当S620时,即背诵6首后,正确的有4首,错误的有2首由Si0(i1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首则所求的概率.(2)由题意知|S5|的所有可能的取值为10,30,50,又,的分布列为.【点睛】本题主要考查离散型随机变量的分布列与数学期望的计算,意在考查学生的逻辑推理能力与数学计算能力18、单调递减区间是,.【解析】将函数解析式化为,解不等式,可得出函数的单调递减区间.【详解】.由,得,.所以函数
15、的单调递减区间是,.【点睛】本题考查正切型函数的单调区间的求解,解题时要利用正切函数的奇偶性将自变量的系数化为正数,然后利用代换进行求解,考查计算能力,属于基础题.19、(1);(2) .【解析】(1)把直线方程与椭圆方程联立,消去得的一元二次方程,直线与椭圆相切,则,结合可求得;(2)利用(1)中结论可求得点坐标,作轴于点,轴于点,由,则有,因此,这样可由点坐标表示出点坐标,由在直线上可得,这样结合,可解得得椭圆标准方程【详解】(1)由直线与椭圆方程联立得,因直线与椭圆相切,则,因此可得; 若,则 ;(2)将代入方程式可得,因此,因此点, 作轴于点,轴于点,则有,因此,, ,在直线上,因此,
16、化简得; 又由,则可得,即有, 则,因此所求的椭圆方程为 .【点睛】本题考查求椭圆的标准方程考查直线与椭圆位置关系直线与椭圆相切,只能由直线方程与椭圆方程联立,消元后得二次方程,则有结论第(2)小题有一定的难度,关键是还要一个的关系式,题中解法是通过几何方法,由点坐标表示出点坐标,僄代入直线方程得到关系式另一种方法是,然后取中点为,则有(不需要再求线段长了),这样两个垂直也可以建立起的关系式20、()()的极大值为,的极小值为【解析】分析:(1)先求导,再利用导数的几何意义求切线的斜率,再求曲线在点处的切线方程.(2)利用导数求函数的极值.详解:(),.故切线的斜率,由直线的点斜式方程可得,化
17、简得,所以切线方程为.()由(),得.令,得或.当变化时,的变化情况如下表:1+0-0+极大值极小值综上,的极大值为,的极小值为.点睛:(1)本题主要考查导数的几何意义和切线方程的求法,考查利用导数求函数的极值,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2) 求函数的极值的一般步骤:先求定义域,再求导,再解方程(注意和求交集),最后列表确定极值.21、(1);(2)【解析】(1),根据余弦定理可得,的关系式,再利用余项定理求出,从而得到的值;(2)根据第一问结论,用余弦定理求出,再利用三角形的面积公式求出面积【详解】(1)在中,由已知及余弦定理得,整理得所以因为,所以.(注:也可以用正弦定理)(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版初中物理中考复习教学导学案 (全套含答案)
- 从《榜样9》悟“四个带头”:对标先进砥砺前行
- 能源项目风险管理 课件 7-能源项目风险监控管理
- 小升初数学衔接教案讲义
- 高一化学达标训练:第三单元从微观结构看物质的多样性
- 吉林省吉林市普通中学2024-2025学年高三上学期二模试题 物理
- 2024高中地理第二章区域生态环境建设第1节荒漠化的防治-以我国西北地区为例2精练含解析新人教必修3
- 2024高中物理第四章电磁感应4法拉第电磁感应定律达标作业含解析新人教版选修3-2
- 2024高考地理一轮复习第三部分区域可持续发展-重在综合第四章区域经济发展第33讲区域工业化与城市化学案新人教版
- 2024高考化学一轮复习第三章金属及其化合物第二讲铝镁及其重要化合物规范演练含解析新人教版
- 医院药品追溯管理制度
- 法律知识图谱构建
- 元音辅音练习题
- 失业保险待遇申领表
- 2024小学数学义务教育新课程标准(2022版)必考题库与答案
- 微型顶管工艺简介
- 2024年全国职业院校技能大赛高职组(智能节水系统设计与安装赛项)考试题库-下(多选、判断题)
- 小学三年级数学下册计算题大全(每日一练共25份)
- Unit 3 同步练习人教版2024七年级英语上册
- “十四五”期间推进智慧水利建设实施方案
- EPC项目机电安装专业工程重难点分析及经验交流
评论
0/150
提交评论