版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题
2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数,若存在唯一的整数,使,则的取值范围是( )ABCD2从,中任取个不同的数字,从,中任取个不同的数字,可以组成没有重复数字的四位偶数的个数为( )ABCD3下列关于正态分布的命题:正态曲线关于轴对称;当一定时,越大,正态曲线越“矮胖”,越小,正态曲线越“瘦高”;设随机变量,则的值等于2;当一定时,正态曲线的位置由确定,随着的变化曲线沿轴平移.其中正确的是( )ABCD4己知三边,的长都是整数,如果,则符合条件的三角形的个数是( )ABCD5已知随机变量,且,则A B C D
3、6两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是( )A模型1的相关指数R2为0.98B模型2的相关指数R2为0.80C模型3的相关指数R2为0.50D模型4的相关指数R2为0.257( )A1BCD8中,则的值是( )ABCD或9在三棱锥中,点为 所在平面内的动点,若与所成角为定值,则动点的轨迹是A圆B椭圆C双曲线D抛物线10 “b2=ac”是“a,b,c成等比数列”的A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件11i是虚数单位,若集合S=,则ABCD12已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则
4、的最小值为( )A3B2C4D二、填空题:本题共4小题,每小题5分,共20分。13已知复数,其中是虚数单位,则的模是_14已知等差数列的前项和为,若,则_.15将正整数对作如下分组,第组为,第组为,第组为,第组为则第组第个数对为_16观察下面几个算式:;12345432125.利用上面算式的规律,计算_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线的焦点为,圆:与轴的一个交点为,圆的圆心为,为等边三角形.求抛物线的方程;设圆与抛物线交于两点,点为抛物线上介于两点之间的一点,设抛物线在点处的切线与圆交于两点,在圆上是否存在点,使得直线均为抛物线的切线,若存
5、在求出点坐标(用表示);若不存在,请说明理由.18(12分)设函数,.(1)求函数的单调递增区间;(2)若函数与在区间内恰有两个交点,求实数的取值范围.19(12分)(选修4-4.坐标系与参数方程)在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)写出曲线的普通方程和直线的直角坐标方程;(2)设点,直线与曲线相交于两点,且,求实数的值.20(12分)某市实施二手房新政一年多以来,为了了解新政对居民的影响,房屋管理部门调查了2018年6月至2019年6月期间购买二手房情况,首先随机抽取了其中的400名购房者,并对其购房
6、面积(单位:平方米,)讲行了一次统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年6月至2019年6月期间当月在售二手房的均价(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码113分别对应2018年6月至2019年6月)(1)试估计该市市民的平均购房面积(同一组中的数据用该组区间的中点值为代表);(2)从该市2018年6月至2019年6月期间所有购买二手房的市民中任取3人,用频率估计概率,记这3人购房面积不低于100平方米的人数为,求的分布列与数学期望;(3)根据散点图选择和两个模型讲行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值,如表所示:0
7、.0054590.0058860.006050请利用相关系数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年8月份的二手房购房均价(精确到0.001).参考数据:,参考公式:21(12分)某种农作物可以生长在滩涂和盐碱地,它的灌溉是将海水稀释后进行灌溉.某实验基地为了研究海水浓度对亩产量(吨)的影响,通过在试验田的种植实验,测得了该农作物的亩产量与海水浓度的数据如下表:海水浓度亩产量(吨)残差绘制散点图发现,可以用线性回归模型拟合亩产量(吨)与海水浓度之间的相关关系,用最小二乘法计算得与之间的线性回归方程为.(1)求的值;(2)统计学中常用相关指数来刻画回归效果,越大,回归效果
8、越好,如假设,就说明预报变量的差异有是解释变量引起的.请计算相关指数(精确到),并指出亩产量的变化多大程度上是由浇灌海水浓度引起的?(附:残差,相关指数,其中)22(10分)为了解某养殖产品在某段时间内的生长情况,在该批产品中随机抽取了120件样本,测量其增长长度(单位:),经统计其增长长度均在区间内,将其按,分成6组,制成频率分布直方图,如图所示其中增长长度为及以上的产品为优质产品(1)求图中的值;(2)已知这120件产品来自于,B两个试验区,部分数据如下列联表:将联表补充完整,并判断是否有99.99%的把握认为优质产品与A,B两个试验区有关系,并说明理由;下面的临界值表仅供参考: (参考公
9、式:,其中)(3)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数的分布列和数学期望E(X) 参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先确定是唯一整数解,再通过图像计算得到范围.【详解】 是函数单调递减;函数单调递增. 存在唯一的整数,使取,满足,则0是唯一整数.恒过定点 如图所示:即 综上所诉:故答案选C【点睛】本题考查了函数的图像,函数的单调性,首先确定0是唯一解是解题的关键.2、A【解析】根据选取的两个偶数是否包含0分为两种情况,种数相加得到答案.【
10、详解】选取的两个偶数不包含0时: 选取的两个偶数包含0时:故共有96个偶数答案选A【点睛】本题考查了排列组合,将情况分类可以简化计算.3、C【解析】分析:根据正态分布的定义,及正态分布与各参数的关系结合正态曲线的对称性,逐一分析四个命题的真假,可得答案详解:正态曲线关于轴对称,故不正确,当一定时,越大,正态曲线越“矮胖”,越小,正态曲线越“瘦高”;正确;设随机变量,则的值等于1;故不正确;当一定时,正态曲线的位置由确定,随着的变化曲线沿轴平移.正确.故选C.点睛:本题以命题的真假判断为载体考查了正态分布及正态曲线,熟练掌握正态分布的相关概念是解答的关键4、D【解析】根据题意,可取的值为1、2、
11、3、25,由三角形的三边关系,有,对分情况讨论,分析可得可取的情况,即可得这种情况下符合条件的三角形的个数,由分类计数原理,结合等差数列的前项和公式,计算可得答案【详解】解:根据题意,可取的值为1、2、3、25,根据三角形的三边关系,有,当时,有2526,则25,有1种情况,当时,有2527,则25、26,有2种情况,当时,有2528,则25、26、27,有3种情况,当时,有2529,则25、26、27、28,有4种情况,当时,有有2550,则25、26、27、2849,有25种情况,则符合条件的三角形共有123425;故选:D【点睛】本题考查分类计数原理的运用,涉及三角形三边的关系,关键是发
12、现变化时,符合条件的三角形个数的变化规律5、B【解析】根据正态分布的对称性即可得到答案.【详解】由于,故选B.【点睛】本题主要考查正态分布中概率的计算,难度不大.6、A【解析】解:因为回归模型中拟合效果的好不好,就看相关指数是否是越接近于1,月接近于1,则效果越好选A7、D【解析】根据微积分基本原理计算得到答案.【详解】.故选:.【点睛】本题考查了定积分,意在考查学生的计算能力.8、B【解析】根据正弦定理求解.【详解】由正弦定理得,选B.【点睛】本题考查正弦定理,考查基本分析求解能力,属基础题.9、B【解析】建立空间直角坐标系,根据题意,求出轨迹方程,可得其轨迹.【详解】由题,三棱锥为正三棱锥
13、,顶点在底面的射影是底面三角形的中心,则以为坐标原点,以为轴,以为轴,建立如图所示的空间直角坐标系,根据题意可得,设为平面内任 一点,则 ,由题与所成角为定值,则 则 ,化简得 , 故动点的轨迹是椭圆.选B【点睛】本题考查利用空间向量研究两条直线所成的角,轨迹方程等,属中档题.10、B【解析】11、B【解析】试题分析:由可得,.考点:复数的计算,元素与集合的关系.12、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,准线,所以当三点共线时,所以.故选A【点睛】本题主要考查抛物
14、线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:分子分母同时乘以,化简整理,得出,再得模。详解:,所以。点睛:复数的除法运算公式。14、【解析】根据等差数列的性质得到,再计算得到答案.【详解】已知等差数列故答案为【点睛】本题考查了等差数列的性质,前N项和,利用性质可以简化运算.15、【解析】根据归纳推理可知,每对数字中两个数字不相等,且第一组每一对数字和为,第二组每一对数字和为,第三组每对数字和为,第组每一对数字和为, 第组第一对数为,第二对数为,第对数为,第对数为,故答案为.16、10000【
15、解析】观察归纳中间数为2,结果为422;中间数为3,结果为932;中间数为4,结果为1642;于是中间数为100,结果应为100210 000.故答案为:10 000点睛:这个题目考查的是合情推理中的数学式子的推理;一般对于这种题目,是通过数学表达式寻找规律,进而得到猜想或者通过我们学习过程中的一些特例取归纳推理,注意观察题干中的式子的规律,以免出现偏差三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;存在,.【解析】(1)由题意,从而求得抛物线方程;(2)设,可设出切线方程及,并设出过点的直线与抛物线相切,从而联立抛物线知,同理,可表示过点N的切线,从而计算两直线相交的交
16、点,于是可得答案.【详解】是等边三角形,原点为中点,半径圆,半径,抛物线设,过点作抛物线的两条切线(异于直线)交于点,并设切线,由替换法则,抛物线在点处的切线方程为即记设过点的直线与抛物线相切,代入抛物线方程得,即根据韦达定理,由可得, 同理可得,切线 联立与圆可得,韦达定理可得,联立、并代入可求得,代入可求得 .所以即切线的交点在圆上,故存在圆上一点满足均为抛物线的切线.【点睛】本题主要考查直线与抛物线的位置关系,意在考查学生的计算能力,分析能力,转化能力,难度较大.18、 (1);(2).【解析】分析:(1)求函数的导数,解便得增区间(2)要使函数与在区间内恰有两个交点,也就是让函数在1,
17、3内有两个零点,令,下面要做的就是考查在区间内最值情况,若有最大值,则限制最大值大于0,然后两个端点值都小于0,若有最小值,情况恰好相反详解:(1),时,所以函数的单调递增区间是.(2)令,则,时,时,是的极大值,也是在上的最大值.函数与在区间内恰有两个交点,函数在区间内有两个零点,则有,.所以有.解得,所以的取值范围是.点睛:利用导数求函数的单调区间,这个不难掌握,注意做第二题,.,这几个限制条件的得出,并掌握做这类题的方法.19、(1),(2)或或.【解析】试题分析:(1)写普通方程,则只需消去参数和根据极坐标变换公式即可轻松求得故曲线的普通方程为.直线的直角坐标方程为.(2)由题可知,所
18、以联立和得 ,代入韦达定理即得答案解析:(1),故曲线的普通方程为.直线的直角坐标方程为.(2)直线的参数方程可以写为(为参数).设两点对应的参数分别为,将直线的参数方程代入曲线的普通方程可以得到 ,所以 或,解得或或.20、(1);(2)1.2;(3)模型的拟合效果更好,预测2019年8月份的二手房购房均价万元/平方米.【解析】(1)求解每一段的组中值与频率的乘积,然后相加得出结果;(2)分析可知随机变量服从二项分布,利用二项分布的概率计算以及期望计算公式来解答;(3)根据相关系数的值来判断选用哪一个模型,并进行数据预测.【详解】解:(1).(2)每一位市民购房面积不低干100平方米的概率为,的分布列为01230.2160.4320.2880.064.(3)设模型和的相关系数分别为,则,模型的拟合效果更好,2019年8月份对应的,万元/平方米.【点睛】相关系数反映的是变量间相关程度的大小:当越接近,相关程度就越大,当越接近,则相关程度越小.21、(1);(2).【解析】分析:(1)先求出,再代入方程即得的值;再求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度木材行业产业园区运营管理合同2篇
- 2025年度污水厂运营托管及污水排放许可咨询服务合同范本3篇
- 2024年中国金属活动房屋市场调查研究报告
- 2025版石材行业节能减排采购合作合同3篇
- 二零二五年度个人房产置换税费结算服务合同3篇
- 2024年项目融资验资业务协议3篇
- 二零二五年度特建筑用钢材直销合作协议2篇
- 二零二五年度人工智能技术研发合伙合作协议3篇
- 2024年中国网罩单点机市场调查研究报告
- 2024年金融服务与还款协议
- 公交车站台服务规范与安全意识
- 2024电商消费趋势年度报告-flywheel飞未-202412
- 慢阻肺护理个案病例范文
- 《农机安全》课件
- 公共厕所清洁保养协议
- 浙江省温州市2023-2024学年六年级上学期期末科学试卷(含答案)3
- 深圳大学《激光原理与技术》2023-2024学年第一学期期末试卷
- 西安市高新第一中学八年级上册地理期末试卷(含答案)
- 2024年广东省深圳市中考英语适应性试卷
- 普法学法知识考试题库(100题附答案)
- 中国普通食物营养成分表(修正版)
评论
0/150
提交评论