机械基础第七章_第1页
机械基础第七章_第2页
机械基础第七章_第3页
机械基础第七章_第4页
机械基础第七章_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、机械基础课件第七章第1页,共31页,2022年,5月20日,2点49分,星期四本章主要介绍在弹性范围内一个自由度系统的振动问题,包含了自由振动、阻尼振动、受迫振动和减振隔振等内容。学习时要深刻理解振动的基本概念,掌握不同振动模式下的微分方程以及利用微分方程来解决具体的实际问题,同时了解关于减振和隔振的基本方法。教学目的和要求第2页,共31页,2022年,5月20日,2点49分,星期四振动的基本概念及简化方式;质点自由振动的微分方程及其解;质点受迫振动的微分方程及其解;减振和隔振。教学重点第3页,共31页,2022年,5月20日,2点49分,星期四质点自由振动的微分方程及其应用;质点受迫振动的微

2、分方程;受迫振动的相位、振幅和共振现象。教学难点第4页,共31页,2022年,5月20日,2点49分,星期四第一节 振动的概念机械振动物体在其平衡位置附近作周期性的机械运动 或往复运动。 振动系统的简化第5页,共31页,2022年,5月20日,2点49分,星期四振动中最简单而且最重要的一种是谐振动。谐振动凡是决定其位置的坐标按余弦或正弦函数规律随时间变化的振动都是谐振动。其运动方程为 A为振幅,即物体离开平衡位置的最大距离;t+为相位,由系统本身的性质决定;x为位移,即振动物体离开平衡位置的位移;即t=0时物体的相位;即物体在任一时刻的相位,它确定简谐振动在该时刻的运动状态。 为初相位,为角频

3、率,第6页,共31页,2022年,5月20日,2点49分,星期四周期质点振动一周所需要的时间。频率质点在1s内振动的次数第7页,共31页,2022年,5月20日,2点49分,星期四第二节 质点的自由振动一、质点自由振动的微分方程及其解平衡位置在离O点x处时沿x轴的合力作用于物体上的合力大小与重物的位移大小成正比(即成线性关系),其方向总是与位移方向相反,即合力总是指向平衡位置。这种使物体恢复到平衡位置的力称为恢复力。振子仅在恢复力作用下的振动,称为自由振动。 第8页,共31页,2022年,5月20日,2点49分,星期四由质点运动的微分方程可得将上式除以m,令通解为第9页,共31页,2022年,

4、5月20日,2点49分,星期四二、振幅和相位时由此可得质点自由振动的振幅和初相位与运动的初始条件有关。 第10页,共31页,2022年,5月20日,2点49分,星期四三、周期和频率角频率周期频率自由振动的周期和频率与运动的初始条件无关,完全取决于振动系统中物体(振子)的质量和弹簧劲度系数。因此,自由振动的频率又称为固有频率或自然频率。 第11页,共31页,2022年,5月20日,2点49分,星期四固有频率的计算根据弹簧的静变形来求。即 对在铅垂方向振动的系统,只要测得在重力作用下的静变形,即可求得系统的固有频率。 第12页,共31页,2022年,5月20日,2点49分,星期四例7-1 车厢如图

5、所示,空载时及满载时弹簧的静变形分别为3cm和24cm。求两种情况下车厢的固有频率和每分钟振动的次数。 解 空载时车厢的固有频率为每分钟振动的次数为满载时车厢的固有频率为每分钟振动的次数为第13页,共31页,2022年,5月20日,2点49分,星期四例7-2 如图所示,在无重弹性梁的中点放置重量为G的物体,其静变形为2 mm。若将重物B放在梁未变形的位置上无初速地释放。求系统自由振动时的运动方程。 O第14页,共31页,2022年,5月20日,2点49分,星期四解 此无重弹性梁相当于弹簧,其刚度系数为取重物平衡位置为坐标原点,运动微分方程为初始条件O系统的振动方程为 x=0.2sin(70t+

6、3 /2)第15页,共31页,2022年,5月20日,2点49分,星期四例7-3 机器设备上使用的弹簧,往往不是一个,而是由几个弹簧并联或串联而成的。求图所示系统的等效弹簧劲度系数及固有频率。 解 (1)并联的弹簧,形变量相同。系统的固有频率第16页,共31页,2022年,5月20日,2点49分,星期四(2)串联的弹簧,受力相同,每个弹簧的静变形为 系统的总变形为系统的固有频率第17页,共31页,2022年,5月20日,2点49分,星期四四、阻尼对自由振动的影响 实际振动过程存在着阻力,这种由弹性恢复力和阻力共同作用的振动叫阻尼振动。 当物体以不大的速度在介质中运动时,其阻力近似的与物体的速度

7、成正比,而方向与速度方向相反,称为线性阻尼。 过阻尼临界阻尼欠阻尼当阻尼较大时,运动已失去周期性,物体不能完成往复运动就停止了运动。当阻尼较小时,振幅随时间而迅速减小,最后趋于零。这种情况称为衰减振动。第18页,共31页,2022年,5月20日,2点49分,星期四第三节 受迫振动一、干扰力及受迫振动的概念干扰力在工程实际问题中,很多机器工作时,常常受到大小方向随时间而变化的作用力,在这个力的作用下,将引起机械系统的振动。这个随时间而变化的力,称为干扰力(也称为激振力)。受迫振动由干扰力所引起的振动称为受迫振动。 干扰力在铅直方向的分力为干扰力的力幅第19页,共31页,2022年,5月20日,2

8、点49分,星期四二、受迫振动的微分方程及其解即将上式除以m,令 得通解第20页,共31页,2022年,5月20日,2点49分,星期四第一项为自由振动,第二项为干扰力引起的受迫振动。 由于系统振动时总会有阻尼存在。所以,第一项代表的自由振动很快就消失了。因此,振动的稳定阶段只剩下第二项。即 当干扰力按正弦规律变化时,则受迫振动是简谐运动,并与运动的初始条件无关。同时,受迫振动的频率、周期分别等于干扰力的频率、周期。 第21页,共31页,2022年,5月20日,2点49分,星期四受迫振动的振幅为式中,B0表示弹簧在干扰力力幅作用下的静变形。 第22页,共31页,2022年,5月20日,2点49分,

9、星期四幅频曲线,振幅B随干扰力频率的增大而增大。(1)此时受迫振动的相位与干扰力的相位相同,即二者同相。,振幅B随干扰力频率的增大而减小。(2)(3),振幅B将趋近于零。受迫振动的相位与干扰力的相位相差180,即二者反相。 第23页,共31页,2022年,5月20日,2点49分,星期四,振幅B将无限增大,产生强烈的振动。这种现象称为共振。(4)旋转机械产生共振时的转速称为临界转速,用表示。 实践证明,频率比在 的范围内时,振动仍然很强烈,工程上把这一区域称为共振区。共振往往是机器或其零件产生破坏的重要原因。因此,在设计和使用机器时,必须使其转速避开共振区。第24页,共31页,2022年,5月2

10、0日,2点49分,星期四例7-4 如图所示,电机的质量为m130000kg,基础的质量m248000kg,基础下的地基经夯实后的弹簧刚性系数为k=1.2109 N/m,转子的角速度=314 rads,转子的偏心引起的干扰力S=9 103 sin t,式中t以秒计,H以牛顿计。求 (1)电机与基础一起在铅直方向作受迫振动的振幅。(2)电机的临界转速nk。 解 振动系统可简化为如图所示的质量-弹簧系统。系统的固有频率为 第25页,共31页,2022年,5月20日,2点49分,星期四振幅为当干扰力频率(即电动机角速度)等于系统固有频率时产生共振。故临界转速为第26页,共31页,2022年,5月20日

11、,2点49分,星期四1)消除振源2)避开共振区 3)适当增加阻尼4)采取隔振措施 (1)利用弹性件如橡皮、木材等将发生振动的机器与地基隔开,以减小振源对周围设备的影响。这种方法称为主动隔振。(2)利用弹性件将需要保护的仪器、仪表、精密设备等与振动的地基隔离,以避免周围振源的影响。这种方法称为被动隔振。 第四节 减振与隔振简述减振和隔振的途径第27页,共31页,2022年,5月20日,2点49分,星期四本章小结1.振动中,最简单而且最重要的一种是谐振动。 谐振动的运动方程为2.质点自由振动的微分方程为 通解为第28页,共31页,2022年,5月20日,2点49分,星期四本章小结3.质点自由振动的振幅和初相位与运动初始条件有关。 4.自由振动的频率又称为固有频率或自然频率。 角频率 周期 频率第29页,共31页,2022年

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论