




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1的内角的对边分别为,若,则内角( )ABCD2下列图形中,不是三棱柱展开图的是( )ABCD3已知定义在上的偶函数,当时,设,则( )ABCD4波罗尼斯(古希腊数学家,的公元前262-190年)的著作圆锥曲线论是古代世界光辉的科学成果,它将
2、圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地他证明过这样一个命题:平面内与两定点距离的比为常数k(k0,且k1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆现有椭圆=1(ab0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,MAB面积的最大值为8,MCD面积的最小值为1,则椭圆的离心率为()ABCD5已知等差数列的前13项和为52,则( )A256B-256C32D-326定义:表示不等式的解集中的整数解之和.若,则实数的取值范围是ABCD7直线x-3y+3=0经过椭圆x2a2+y2bA3-1B3-12C8已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则(
3、)A1194B1695C311D10959正项等差数列的前和为,已知,则=( )A35B36C45D5410已知、,则下列是等式成立的必要不充分条件的是( )ABCD11下列命题中,真命题的个数为( )命题“若,则”的否命题;命题“若,则或”;命题“若,则直线与直线平行”的逆命题.A0B1C2D312已知,则 ()ABCD二、填空题:本题共4小题,每小题5分,共20分。13农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,
4、将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为_;若该六面体内有一球,则该球体积的最大值为_14根据如图所示的伪代码,输出的值为_.15设为定义在上的偶函数,当时,(为常数),若,则实数的值为_.16已知双曲线的一条渐近线方程为,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(,)满足下列3个条件中的2个条件:函数的周期为;是函数的对称轴;且在区间上单调.()请指出这二个条件,并求出函数的解析式;()若,求函数的值域.18(12分)已知函数,.(1)当时,判断是否是函数的极值点,并说明理由;(2)当时,不等式恒成立,求整数的最小
5、值.19(12分)已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.20(12分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和21(12分)已知为各项均为整数的等差数列,为的前项和,若为和的等比中项,.(1)求数列的通项公式;(2)若,求最大的正整数,使得.22(10分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,ABC120,ABAEED2EF,EFAB,点G为CD中点,平面
6、EAD平面ABCD.(1)证明:BDEG;(2)若三棱锥,求菱形ABCD的边长.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】由正弦定理化边为角,由三角函数恒等变换可得【题目详解】,由正弦定理可得,三角形中,故选:C【答案点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键2、C【答案解析】根据三棱柱的展开图的可能情况选出选项.【题目详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【答案点睛】本小题主要考查三棱柱展开
7、图的判断,属于基础题.3、B【答案解析】根据偶函数性质,可判断关系;由时,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【题目详解】为定义在上的偶函数,所以所以;当时,则,令则,当时,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【答案点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.4、D【答案解析】求得定点M的轨迹方程可得,解得a,b即可.【题目详解】设A(-a,0),B(a,0),M(x,y)动点M满足=2,则 =2,化简得.MAB面积的最大值为8,MCD面积的最小值为1, ,解得,
8、椭圆的离心率为故选D【答案点睛】本题考查了椭圆离心率,动点轨迹,属于中档题5、A【答案解析】利用等差数列的求和公式及等差数列的性质可以求得结果.【题目详解】由,得.选A.【答案点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.6、D【答案解析】由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示. 若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实
9、数的取值范围是.故选D.7、A【答案解析】由直线x-3y+3=0过椭圆的左焦点F,得到左焦点为再由FC=2CA,求得A3【题目详解】由题意,直线x-3y+3=0经过椭圆的左焦点F,令所以c=3,即椭圆的左焦点为F(-3,0)直线交y轴于C(0,1),所以,OF=因为FC=2CA,所以FA=3又由点A在椭圆上,得3a由,可得4a2-24所以e2所以椭圆的离心率为e=3故选A.【答案点睛】本题考查了椭圆的几何性质离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:求出a,c ,代入公式e=ca;只需要根据一个条件得到关于a,b,c的齐次式,转化为a,c的齐次式,然后转化为关于e的方程,即可
10、得8、D【答案解析】确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【题目详解】时,所以数列的前35项和中,有三项3,9,27,有32项,所以故选:D【答案点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的9、C【答案解析】由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【题目详解】正项等差数列的前项和,解得或(舍),故选C.【答案点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质(
11、)与前 项和的关系.10、D【答案解析】构造函数,利用导数分析出这两个函数在区间上均为减函数,由得出,分、三种情况讨论,利用放缩法结合函数的单调性推导出或,再利用余弦函数的单调性可得出结论.【题目详解】构造函数,则,所以,函数、在区间上均为减函数,当时,则,;当时,.由得.若,则,即,不合乎题意;若,则,则,此时,由于函数在区间上单调递增,函数在区间上单调递增,则,;若,则,则,此时,由于函数在区间上单调递减,函数在区间上单调递增,则,.综上所述,.故选:D.【答案点睛】本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题.11、C
12、【答案解析】否命题与逆命题是等价命题,写出的逆命题,举反例排除;原命题与逆否命题是等价命题,写出的逆否命题后,利用指数函数单调性验证正确;写出的逆命题判,利用两直线平行的条件容易判断正确.【题目详解】的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;的逆否命题为“若且,则”,该命题为真命题,故为真命题;的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【答案点睛】本题考查判断命题真假. 判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断(2)当一个命题改写成“若,则”的形式之后,判断这个命
13、题真假的方法:若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;判定“若,则”是假命题,只需举一反例即可12、B【答案解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【题目详解】,本题正确选项:【答案点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力二、填空题:本题共4小题,每小题5分,共20分。13、 【答案解析】(1)先算出正四面体的体积,六面体的体积是正四面体体积的倍,即可得出该六面体的体积;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,求出球的半径,再代入球的体积公式可得答案.【题目详解】(1)每个三角形面积是,由对称性可知
14、该六面是由两个正四面合成的,可求出该四面体的高为,故四面体体积为,因此该六面体体积是正四面体的2倍, 所以六面体体积是;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥设球的半径为,所以, 所以球的体积.故答案为:;.【答案点睛】本题考查由平面图形折成空间几何体、考查空间几何体的的表面积、体积计算,考查逻辑推理能力和空间想象能力求解球的体积关键是判断在什么情况下,其体积达到最大,考查运算求解能力.14、7【答案解析】表示初值S=1,i=1,分三次循环计算得S=100,
15、输出i=7.【题目详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=109,循环结束,输出:i=7.故答案为:7【答案点睛】本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.15、1【答案解析】根据为定义在上的偶函数,得,再根据当时,(为常数)求解.【题目详解】因为为定义在上的偶函数,所以,又因为当时,所以,所以实数的值为1.故答案为:1【答案点睛】本题主要考查函数奇偶性的应用,还考查了运算求解的能力,属于基础题.16、【答案解析】根据双曲线的标准方程写出双曲线的渐近
16、线方程,结合题意可求得正实数的值.【题目详解】双曲线的渐近线方程为,由于该双曲线的一条渐近线方程为,解得.故答案为:.【答案点睛】本题考查利用双曲线的渐近线方程求参数,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()只有成立,;().【答案解析】()依次讨论成立,成立,成立,计算得到只有成立,得到答案.()得到,得到函数值域.【题目详解】()由可得,;由得:,;由得,;若成立,则,若成立,则,不合题意,若成立,则,与中的矛盾,所以不成立,所以只有成立,.()由题意得,所以函数的值域为.【答案点睛】本题考查了三角函数的周期,对称轴,单调性,值域,
17、表达式,意在考查学生对于三角函数知识的综合应用.18、(1)是函数的极大值点,理由详见解析;(2)1.【答案解析】(1)将直接代入,对求导得,由于函数单调性不好判断,故而构造函数,继续求导,判断导函数在左右两边的正负情况,最后得出,是函数的极大值点;(2)利用题目已有条件得,再证明时,不等式 恒成立,即证,从而可知整数的最小值为1.【题目详解】解:(1)当时,.令,则当时,.即在内为减函数,且当时,;当时,.在内是增函数,在内是减函数.综上,是函数的极大值点. (2)由题意,得,即.现证明当时,不等式成立,即.即证令则当时,;当时,.在内单调递增,在内单调递减, 的最大值为.当时,.即当时,不
18、等式成立.综上,整数的最小值为.【答案点睛】本题考查学生利用导数处理函数的极值,最值,判断函数的单调性,由此来求解函数中的参数的取值范围,对学生要求较高,然后需要学生能构造新函数处理恒成立问题,为难题19、 (1)见解析;(2).【答案解析】试题分析:(1)利用平方法消去参数,即可得到的普通方程,两边同乘以利用 即可得的直角坐标方程;(2)设直线的参数方程为(为参数),代入,利用韦达定理、直线参数方程的几何意义以及三角函数的有界性可得结果.试题解析:(1)曲线的普通方程为,曲线的直角坐标方程为 ; (2)设直线的参数方程为(为参数)又直线与曲线:存在两个交点,因此. 联立直线与曲线:可得则联立直线与曲线:可得,则即20、(1);(2)【答案解析】(1)由化为,利用数列的通项公式和前n项和的关系,得到是首项为,公差为的等差数列求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西北海市普通高中2025年物理高一第二学期期末调研试题含解析
- 山东省青岛市第一中学2025届高二物理第二学期期末预测试题含解析
- 宣传园所课件
- 2025版儿童节目编剧聘用合同模板
- 2025年度虚拟现实(VR)内容制作合同范本
- 二零二五年保健品网络营销推广合作协议
- 2025版智能安防系统施工与运营管理合同
- 2025版宾馆房间租赁合同及文化体验活动合作合同
- 二零二五年度财务顾问与财务数据分析合同样本
- 二零二五年茶叶品牌战略规划与执行合同
- GB/T 45418-2025配电网通用技术导则
- 高职单招英语词汇表
- 医院食品安全自查报告范文
- 汽车涂装工艺知识大全
- (完整版)高考英语词汇3500词(精校版)
- 苏州2025年江苏苏州市教育局直属学校招聘教师57人笔试历年典型考点(频考版试卷)附带答案详解版
- 2025届高三英语一轮复习人教版(2019)选择性必修第一册单词默写纸
- 医院应急知识培训课件
- 2024年物联网平台开发与运营服务合同3篇
- 《铸铁及其熔炼》课件
- 《教育系统重大事故隐患判定指南》知识培训
评论
0/150
提交评论