版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数满足,则复数等于()ABC2D-22执行下面的程序框图,则输出的值为 ( )ABCD3在中,则边上的高为( )AB2CD4复数满足,则复数在复平面内所对应的点在( )A第一象限B第二象限C第三象限D第四象限5博览会安排了分别标有序号为“1号”
2、“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾某嘉宾突发奇想,设计两种乘车方案方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )AP1P2BP1P2CP1+P2DP1P26设,是非零向量,若对于任意的,都有成立,则ABCD7设全集U=R,集合,则()ABCD8公比为2的等比数列中存在两项,满足,则的最小值为( )ABCD9设等差数列的前项和为,若,则( )A23B25C28D2910在中,点D是线段BC上任意一点,则( )AB-2CD211如下的程序框图的算
3、法思路源于我国古代数学名著九章算术中的“更相减损术”执行该程序框图,若输入的a,b分别为176,320,则输出的a为( )A16B18C20D1512如图所示的程序框图输出的是126,则应为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,分别为内角,的对边,则的面积为_.14高三(1)班共有56人,学号依次为1,2,3,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为 15己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是_.16设为等比数列的前项和,若,且,成等差数列,则 .三、解答题:共70分
4、。解答应写出文字说明、证明过程或演算步骤。17(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,ABC120,ABAEED2EF,EFAB,点G为CD中点,平面EAD平面ABCD.(1)证明:BDEG;(2)若三棱锥,求菱形ABCD的边长.18(12分)已知函数.(1)求函数的单调递增区间;(2)在ABC中,角A,B,C所对的边分别是a,b,c,若满足,求.19(12分)选修4-5:不等式选讲设函数f(x)=|x-a|,a0(1) 证明:f(x)+f(-1(2)若不等式f(x)+f(2x)12的解集非空,求20(12分)在平面直角坐标系xOy中,曲线的参数方程为(为参数)以平面直
5、角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为(1)求曲线的极坐标方程;(2)设和交点的交点为,求 的面积21(12分)已知函数(I)当时,解不等式.(II)若不等式恒成立,求实数的取值范围22(10分)如图,在四棱锥中,底面,为的中点,是上的点.(1)若平面,证明:平面.(2)求二面角的余弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】通过复数的模以及复数的代数形式混合运算,化简求解即可.【题目详解】复数满足,故选B.【答案点睛】本题主要考查复数
6、的基本运算,复数模长的概念,属于基础题2、D【答案解析】根据框图,模拟程序运行,即可求出答案.【题目详解】运行程序,结束循环,故输出,故选:D.【答案点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.3、C【答案解析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【题目详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【答案点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.4、B【答案解析】设,则,可得,即可得到,进而找到对应的点所在
7、象限.【题目详解】设,则,所以复数在复平面内所对应的点为,在第二象限.故选:B【答案点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.5、C【答案解析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.【题目详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1;方案二坐车可能:312、321,所以,P1;所以P1+P2故选C.【答案点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.6、D【答案解析】画出,根据向量的加减法,分别画出的几种情况,由数形结合可得
8、结果.【题目详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【答案点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.7、A【答案解析】求出集合M和集合N,,利用集合交集补集的定义进行计算即可【题目详解】,则,故选:A【答案点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题8、D【答案解析】根据已知条件和等比数列的通项公式,求出关系,即可求解.【题目详解】,当时,当时,当时,当时,当时,当时,最小值为.故选:D.【答案点睛】本题考查等比数列通
9、项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.9、D【答案解析】由可求,再求公差,再求解即可.【题目详解】解:是等差数列,又,公差为,故选:D【答案点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.10、A【答案解析】设,用表示出,求出的值即可得出答案.【题目详解】设由,.故选:A【答案点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.11、A【答案解析】根据题意可知最后计算的结果为的最大公约数.【题目详解】输入的a,b分别为,根据流程图可知最后计算的结果为的最大公约数,按流程图计算,易得176和3
10、20的最大公约数为16,故选:A.【答案点睛】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.12、B【答案解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件S=2+22+21=121,故中应填n1故选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前
11、两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据题意,利用余弦定理求得,再运用三角形的面积公式即可求得结果.【题目详解】解:由于,由余弦定理得,解得,的面积.故答案为:.【答案点睛】本题考查余弦定理的应用和三角形的面积公式,考查计算能力.14、20【答案解析】根据系统抽样的定义将56人按顺序分成4组,每组14人,则1至14号为第一组,15至28号为第二组,29号至42号为第三组,43号至56号为第四组.而学号6,34,48分别是第一、三、四组的学号,所以还有一个同学应该是15+6-1=20号,故答案
12、为20.15、【答案解析】首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进而建立不等式组,解出即可得到答案【题目详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,解得故答案为【答案点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目16、.【答案解析】试题分析:,成等差数列,又等比数列,.考点:等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量的方程即可求解,考查
13、学生等价转化的思想与方程思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【答案解析】(1)取中点,连,可得,结合平面EAD平面ABCD,可证平面ABCD,进而有,再由底面是菱形可得,可得,可证得平面,即可证明结论;(2)设底面边长为,由EFAB,AB2EF,求出体积,建立的方程,即可求出结论.【题目详解】(1)取中点,连,底面ABCD为菱形,平面EAD平面ABCD,平面平面平面,平面平面,底面ABCD为菱形,为中点,平面,平面平面,;(2)设菱形ABCD的边长为,则,所以菱形ABCD的边长为.【答案点睛】本题考查线线垂直的证明和椎体的体积,注意
14、空间中垂直关系之间的相互转化,体积问题要熟练应用等体积方法,属于中档题.18、(1);(2)【答案解析】(1)化简得到,取,解得答案.(2),解得,根据余弦定理得到,再用一次余弦定理解得答案.【题目详解】(1).取,解得.(2),因为, 故,.根据余弦定理:,.【答案点睛】本题考查了三角恒等变换,三角函数单调性,余弦定理,意在考查学生对于三角函数知识的综合应用.19、 (1)见解析.(1) (-1,0).【答案解析】试题分析:(1)直接计算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分区间讨论去绝对值符号分别解不等式即可.试题解析: (1)证明:函数f(x)=|xa
15、|,a2,则f(x)+f()=|xa|+|a|=|xa|+|+a|(xa)+(+a)|=|x+|=|x|+1=1(1)f(x)+f(1x)=|xa|+|1xa|,a2当xa时,f(x)=ax+a1x=1a3x,则f(x)a;当ax时,f(x)=xa+a1x=x,则f(x)a;当x时,f(x)=xa+1xa=3x1a,则f(x)则f(x)的值域为,+).不等式f(x)+f(1x)的解集非空,即为,解得,a1,由于a2,则a的取值范围是(-1,0)考点:1.含绝对值不等式的证明与解法.1.基本不等式.20、(1);(2)【答案解析】(1)先将曲线的参数方程化为普通方程,再将普通方程化为极坐标方程即
16、可.(2)将和的极坐标方程联立,求得两个曲线交点的极坐标,即可由极坐标的含义求得的面积.【题目详解】(1)曲线的参数方程为(为参数),消去参数的的直角坐标方程为所以的极坐标方程为 (2)解方程组,得到所以,则或()当()时,当()时,所以和的交点极坐标为: ,. 所以故的面积为【答案点睛】本题考查了参数方程与普通方程的转化,直角坐标方程与极坐标的转化,利用极坐标求三角形面积,属于中档题.21、() ;().【答案解析】试题分析:(1)根据零点分区间法,去掉绝对值解不等式;(2)根据绝对值不等式的性质得,因此将问题转化为恒成立,借此不等式即可试题解析:()由得,或,或 解得:所以原不等式的解集为 .()由不等式的性质得:,要使不等式恒成立,则 当时,不等式恒成立;当时,解不等式得 综上 所以实数的取值范围为.22、(1)证明见解析(2)【答案解析】(1)因为,利用线面平行的判定定理可证出平面,利用点线面的位置关系,得出和,由于底面,利用线面垂直的性质,得出,且,最后结合线面垂直的判定定理得出平面,即可证出平面.(2)由(1)可知,两两垂直,建立空间直角坐标系,标出点坐标,运用空间向量坐标运算求出所需向量,分别求出平面和平面的法向量,最后利用空间二面角公式,即可求出的余弦值.【题目详解】(1)证明:因为,平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电力系统电力物资安全储存与运输合同3篇
- 二零二五年建筑公司内部工程承包合同范本5篇
- 临时服务协议:专项工作期间合作意向书版A版
- 2025年度农家乐乡村旅游服务合同范本3篇
- 2024版有关房屋分配协议书
- 2024租赁期满设备回收合同
- 二零二五年租房合同涉及的环保要求3篇
- 二零二五版出租车行业驾驶员劳动合同执行规范6篇
- 二零二五年能源设施工程设计合同补充协议3篇
- 2024版智能可穿戴设备设计与生产合同
- 3-U9C操作培训-MRP基础
- 2024至2030年中国铜制装饰材料行业投资前景及策略咨询研究报告
- 中金公司在线测评真题
- 高中英语新课程标准解读课件
- 2024供应商大会策划方案
- 2024光伏发电工程交流汇流箱技术规范
- 旅游活动碳排放管理评价指标体系构建及实证研究
- 2024小学语文六年级上册第四单元:大单元整体教学课件
- 12S108-1 倒流防止器选用及安装
- 人教版六年级下册数学期末测试卷附答案【达标题】
- 员工工作状态分析
评论
0/150
提交评论