版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年广东省高州市谢鸡镇十校联考最后数学测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1(3分)学校要组织足球比赛赛制为单循环形式(每两队之间赛一场)计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛根据题意,下面所列方程正确的是( )A B
2、 C D2对于两组数据A,B,如果sA2sB2,且,则()A这两组数据的波动相同B数据B的波动小一些C它们的平均水平不相同D数据A的波动小一些3如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CEx轴交双曲线于点E,连接BE,则BCE的面积为()A5B6C7D84若一次函数y(2m3)x1+m的图象不经过第三象限,则m的取值范图是()A1mB1mC1mD1m5一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )ABCD6如图所示
3、的工件,其俯视图是()ABCD7将一块直角三角板ABC按如图方式放置,其中ABC30,A、B两点分别落在直线m、n上,120,添加下列哪一个条件可使直线mn( )A220B230C245D2508如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BCCDDA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动设P点运动时间为x(s),BPQ的面积为y(cm2),则y关于x的函数图象是( )ABCD9不等式x+13的解集是()Ax4Bx4Cx4Dx410如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,A
4、EBD,EFBC,tanABC=,EF=,则AB的长为()ABC1D11如图,已知点A、B、C、D在O上,圆心O在D内部,四边形ABCO为平行四边形,则DAO与DCO的度数和是()A60B45C35D3012统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )A13、15、14B14、15、14C13.5、15、14D15、15、15二、填空题:(本大题共6个小题,每小题4分,共24分)13函数中,自变量的取值范围是_14在一个不透明的袋子里装有一个黑球和
5、两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是_.15已知直线y=kx(k0)经过点(12,5),将直线向上平移m(m0)个单位,若平移后得到的直线与半径为6的O相交(点O为坐标原点),则m的取值范围为_16如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PEBC于点E,PFDC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:MF=MC;AHEF;AP2=PMPH; EF的最小值是其中正确的是_(把你认为正确结
6、论的序号都填上)17函数中,自变量的取值范围是_18不等式组的所有整数解的积为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知关于x的一元二次方程有实数根(1)求k的取值范围;(2)若k为正整数,且方程有两个非零的整数根,求k的取值20(6分)如图,直线y2x6与反比例函数y(k0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线yn(0n6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线yn沿y轴方向平移,当n为何值时,BMN的面积最大?21(6分)如图,在矩形ABCD中,AB=3,BC=4,将
7、矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,BC与AD交于点E,AD的延长线与AD交于点F(1)如图,当=60时,连接DD,求DD和AF的长;(2)如图,当矩形ABCD的顶点A落在CD的延长线上时,求EF的长;(3)如图,当AE=EF时,连接AC,CF,求ACCF的值22(8分)如图,在锐角ABC中,小明进行了如下的尺规作图:分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧分别相交于点P、Q作直线PQ分别交边AB、BC于点E、D小明所求作的直线DE是线段AB的 ;联结AD,AD7,sinDAC17,BC9,求AC23(8分)某食品厂生产一种半成品食材,产量百千克与销售价格元
8、千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:销售价格元千克2410市场需求量百千克12104已知按物价部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本24(10分)某公司销售A,B两
9、种品牌的教学设备,这两种教学设备的进价和售价如表所示AB进价(万元/套)1.51.2售价(万元/套)1.81.4该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?25(10分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元假设该公司2、
10、3、4月每个月生产成本的下降率都相同求每个月生产成本的下降率;请你预测4月份该公司的生产成本26(12分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书)请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量27(12分)解不等式组并写出它的整数解2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小
11、题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【答案解析】测试卷分析:设有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:,故选B考点:由实际问题抽象出一元二次方程2、B【答案解析】测试卷解析:方差越小,波动越小. 数据B的波动小一些.故选B.点睛:本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定3、C【答案解析】作辅助线,构建全等三角形:过D作GHx轴,过A作AGGH,过B作BMHC于
12、M,证明AGDDHCCMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论【题目详解】解:过D作GHx轴,过A作AGGH,过B作BMHC于M,设D(x,),四边形ABCD是正方形,ADCDBC,ADCDCB90,易得AGDDHCCMB(AAS),AGDHx1,DGBM,GQ1,DQ,DHAGx1,由QG+DQBMDQ+DH得:11x,解得x2,D(2,3),CHDGBM14,AGDH1x1,点E的纵坐标为4,当y4时,x,E(,4),EH2,CECHHE4,SCEBCEBM47;故选C【答案点睛】考查正方形的性质、全等三角
13、形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题4、B【答案解析】根据一次函数的性质,根据不等式组即可解决问题;【题目详解】一次函数y=(2m-3)x-1+m的图象不经过第三象限,解得1m故选:B【答案点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型5、D【答案解析】测试卷分析:列表如下黑白1白2黑(黑,黑)(白1,黑)(白2,黑)白1(黑,白1)(白1,白1)(白2,白1)白2(黑,白2)(白1,白2)(白2,白2)由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两
14、次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是故答案选D考点:用列表法求概率6、B【答案解析】测试卷分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线7、D【答案解析】根据平行线的性质即可得到2=ABC+1,即可得出结论【题目详解】直线EFGH,2=ABC+1=30+20=50,故选D【答案点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键8、C【答案解析】测试卷分析:由题意可得BQ=x0 x1时,P点在BC边上,BP=3x,则BPQ的面
15、积=BPBQ,解y=3xx=;故A选项错误;1x2时,P点在CD边上,则BPQ的面积=BQBC,解y=x3=;故B选项错误;2x3时,P点在AD边上,AP=93x,则BPQ的面积=APBQ,解y=(93x)x=;故D选项错误故选C考点:动点问题的函数图象9、A【答案解析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解【题目详解】移项得:x31,合并同类项得:x2,系数化为1得:x-4.故选A.【答案点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.10、B【答案解析】由平行四边形性质得出AB=CD,ABCD,证出四边形ABDE是平行四边形,得出DE=
16、DC=AB,再由平行线得出ECF=ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长【题目详解】四边形ABCD是平行四边形,ABDC,AB=CD,AEBD,四边形ABDE是平行四边形,AB=DE,AB=DE=CD,即D为CE中点,EFBC,EFC=90,ABCD,ECF=ABC,tanECF=tanABC=,在RtCFE中,EF=,tanECF=,CF=,根据勾股定理得,CE=,AB=CE=,故选B【答案点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键11、A【答案解析】测试卷解析:连接OD
17、,四边形ABCO为平行四边形,B=AOC,点A. B. C.D在O上,由圆周角定理得, 解得, OA=OD,OD=OC,DAO=ODA,ODC=DCO,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.12、B【答案解析】根据加权平均数、众数、中位数的计算方法求解即可.【题目详解】,15出现了8次,出现的次数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.故选B.【答案点睛】本题考查了平均数、众数与中位数的意义数据x1、x2、xn的加权平均数:(其中w1、w2、wn分别为x1、x2、xn的权数).一组数据中出现次数最多的数据叫做众
18、数中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数二、填空题:(本大题共6个小题,每小题4分,共24分)13、【答案解析】根据被开方式是非负数列式求解即可.【题目详解】依题意,得,解得:,故答案为:【答案点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:当函数解析式是整式时,字母可取全体实数;当函数解析式是分式时,考虑分式的分母不能为0;当函数解析式是二次根式时,被开方数为非负数对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义14、1【答案解析】首先根据题意
19、列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案注意此题属于放回实验【题目详解】列表得:第一次 第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白共有9种等可能的结果,两次都摸到黑球的只有1种情况,两次都摸到黑球的概率是19故答案为:19【答案点睛】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.15、0m【答案解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答【题目详解】把点(12,5)代入直线y=kx得,5=12k
20、,k=;由y=x平移m(m0)个单位后得到的直线l所对应的函数关系式为y=x+m(m0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,A(m,0),B(0,m),即OA=m,OB=m,在RtOAB中,AB=,过点O作ODAB于D,SABO=ODAB=OAOB,OD=mm,m0,解得OD=m,由直线与圆的位置关系可知m 6,解得m,故答案为0m.【答案点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.16、【答案解析】可用特殊值法证明,当
21、为的中点时,可见.可连接,交于点,先根据证明,得到,根据矩形的性质可得,故,又因为,故,故.先证明,得到,再根据,得到,代换可得.根据,可知当取最小值时,也取最小值,根据点到直线的距离也就是垂线段最短可得,当时,取最小值,再通过计算可得.【题目详解】解:错误.当为的中点时,可见;正确.如图,连接,交于点,四边形为矩形,.正确.,又,.正确.且四边形为矩形,当时,取最小值,此时,故的最小值为.故答案为:.【答案点睛】本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.17、【答案解析】根据分式有意义
22、的条件是分母不为2;分析原函数式可得关系式x12,解得答案【题目详解】根据题意得x12,解得:x1;故答案为:x1【答案点睛】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为218、1【答案解析】解:,解不等式得:,解不等式得:,不等式组的整数解为1,1,151,所以所有整数解的积为1,故答案为1【答案点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)k1【答案解析】(1)根据一元二次方程2x2+4x+k1=0有实数根,可得出0,解不等式即可得出结论
23、;(2)分别把k的正整数值代入方程2x2+4x+k1=0,根据解方程的结果进行分析解答【题目详解】(1)由题意得:=168(k1)0,k1(2)k为正整数,k=1,2,1当k=1时,方程2x2+4x+k1=0变为:2x2+4x =0,解得:x=0或x=2,有一个根为零;当k=2时,方程2x2+4x+k1=0变为:2x2+4x +1=0,解得:x=,无整数根;当k=1时,方程2x2+4x+k1=0变为:2x2+4x +2=0,解得:x1=x2=1,有两个非零的整数根综上所述:k=1【答案点睛】本题考查了一元二次方程根的判别式:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(
24、1)0方程没有实数根20、(1)m8,反比例函数的表达式为y;(2)当n3时,BMN的面积最大【答案解析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【题目详解】解:(1)直线y=2x+6经过点A(1,m),m=21+6=8,A(1,8),反比例函数经过点A(1,8),8=,k=8,反比例函数的解析式为y=(2)由题意,点M,N的坐标为M(,n),N(,n),0n6,0,SBMN=(|+|)n=(+)n=(n3)2+,n=3时,BMN的面积最大21、(1)DD=1,AF= 4;(2);(1)【答案解析】(1)如图中,矩形ABCD绕点C按
25、顺时针方向旋转角,得到矩形ABCD,只要证明CDD是等边三角形即可解决问题;如图中,连接CF,在RtCDF中,求出FD即可解决问题;(2)由ADFADC,可推出DF的长,同理可得CDECBA,可求出DE的长,即可解决问题;(1)如图中,作FGCB于G,由SACF=ACCF=AFCD,把问题转化为求AFCD,只要证明ACF=90,证明CADFAC,即可解决问题;【题目详解】解:(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,AD=AD=BC=BC=4,CD=CD=AB=AB=1ADC=ADC=90=60,DCD=60,CDD是等边三角形,DD=CD=1如图中,连接CFCD=
26、CD,CF=CF,CDF=CDF=90,CDFCDF,DCF=DCF=DCD=10在RtCDF中,tanDCF=,DF=,AF=ADDF=4(2)如图中,在RtACD中,D=90,AC2=AD2+CD2,AC=5,AD=2DAF=CAD,ADF=D=90,ADFADC,DF=同理可得CDECBA,ED=,EF=ED+DF=(1)如图中,作FGCB于G四边形ABCD是矩形,GF=CD=CD=1SCEF=EFDC=CEFG,CE=EF,AE=EF,AE=EF=CE,ACF=90ADC=ACF,CAD=FAC,CADFAC,AC2=ADAF,AF=SACF=ACCF=AFCD,ACCF=AFCD=2
27、2、(1)线段AB的垂直平分线(或中垂线);(2)AC53【答案解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得ADBD,得到CD2,又因为已知sinDAC=17【题目详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DFAC,垂足为点F,如图,DE是线段AB的垂直平分线,ADBD7CDBCBD2,在RtADF中,sinDACDFADDF1,在RtADF中,AF72在RtCDF中,CF22ACAF+CF43【答案点睛】本题考查了垂直平分线的尺
28、规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.23、(1) ;(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加【答案解析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)由题意可得:pq,进而得出x的取值范围;(3)利用顶点式求出函数最值得出答案;利用二次函数的增减性得出答案即可【题目详解】(1)设q=kx+b(k,b为常数且k0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,q与x的函数关系式为:q=x+14;(2)当产量小于或等于市场需求量时,有pq,x+8x+14,解得:x4,
29、又2x10,2x4;(3)当产量大于市场需求量时,可得4x10,由题意得:厂家获得的利润是:y=qx2p=x2+13x16=(x)2;当x时,y随x的增加而增加又产量大于市场需求量时,有4x10,当4x时,厂家获得的利润y随销售价格x的上涨而增加【答案点睛】本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键24、(1)该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套;(2)A种品牌的教学设备购进数量至多减少1套 【答案解析】(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据花11万元购进两种设备销售
30、后可获得利润12万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据总价=单价数量结合用于购进这两种教学设备的总资金不超过18万元,即可得出关于m的一元一次不等式,解之取其中最大的整数即可得出结论【题目详解】解:(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据题意得:解得:答:该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据题意得:1.5(20m)+1.2(30+1.5m)18,解得:m,m为整数,m1答:A种品牌的教学设备购进数量至多减少1套【答案点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年煤矿开发深度合作协议模版版B版
- 安徽省淮北市五校联考2022-2023学年八年级下学期第一次月考历史试题(解析版)
- 2024年物业服务管理合同(智能化系统)
- 2024年水果订购合同:柑橘专篇
- 期中检测题(2)(解析版)
- 2024年度文化产业股权并购委托转让协议6篇
- 2024年度文艺晚会导演聘用合同正式版本3篇
- 2025超市管理咨询居间的合同范本
- 2024年标准协议模板版B版
- 2024年土地平整工程与现代农业装备合作合同3篇
- 2015团章考试试题与答案(一)
- 1000个人名随机生成
- 中层干部竞聘演讲稿经典范文
- 最近国内外新闻大事ppt
- 移民安置档案归档范围与保管期限表
- 加油站安全生产例会制度安全生产
- 中心小学综合楼建设项目可行性研究报告
- 仓库电动叉车操作作业指导书
- 《可爱的中国读》书分享会PPT课件(带内容)
- 市政道路工程项目照明工程施工设计方案
- 中国新时代北斗精神
评论
0/150
提交评论