版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在二项式的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( )ABCD2在棱长为1的正方体中,E,F分别为线段CD和上的动点,且满足,则四边形所围成的图形(如图
2、所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和()A有最小值B有最大值C为定值3D为定值23已知展开式中项的系数为5,则()ABC2D44因为对数函数是增函数,而是对数函数,所以是增函数,上面的推理错误的是A大前提B小前提C推理形式D以上都是5设正项等差数列an的前n项和为Sn,若S2019A1B23C1366函数的导函数为,对任意的,都有成立,则( )ABCD与大小关系不确定7在棱长为的正方体中,如果、分别为和的中点,那么直线与所成角的大小为( )ABCD8某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是
3、随机的,则他等车时间不超过10分钟的概率是ABCD9一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A乙 B甲 C丁 D丙10已知函数的部分图象如图所示,则函数的表达式是( )ABCD11已知an为等差数列,其前n项和为Sn,若a3=6,S3=12,则公差d等于( )A1BC2D312设,则使得的的取值范围是( )ABCD二、填空题:本题共4小题
4、,每小题5分,共20分。13已知关于的不等式的解集为,则实数_.14已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为,已知,且该产品的次品率不超过,则这10件产品的次品率为_15在二项展开式中,常数项是_.16在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)为了让观赏游玩更便捷舒适,常州恐龙园推出了代步工具租用服务.已知有脚踏自行车与电动自行车两种车型,采用分段计费的方式租用.型车每分钟收费元(不足分钟的部分按分钟计算),型车每分钟收费元(不足
5、分钟的部分按分钟计算),现有甲乙丙丁四人,分别相互独立地到租车点租车骑行(各租一车一次),设甲乙丙丁不超过分钟还车的概率分别为,并且四个人每人租车都不会超过分钟,甲乙丙均租用型车,丁租用型车(1)求甲乙丙丁四人所付的费用之和为25元的概率;(2)求甲乙丙三人所付的费用之和等于丁所付的费用的概率;(3)设甲乙丙丁四人所付费用之和为随机变量,求的概率分布和数学期望18(12分)已知抛物线C:y24x和直线l:x1.(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;(2)过直线l上任一点P作抛物线的两条切线,切点记为A,B,求证:直线AB过定点.19(12分)食品安全问
6、题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P、种黄瓜的年收益Q与投入a(单位:万元)满足P80120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元)(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?20(12分)已知实数为整数,函数,(1)求函数的单调区间;(2)如果存在,使得成立,试判断整数是否有最小
7、值,若有,求出值;若无,请说明理由(注:为自然对数的底数).21(12分)已知空间向量a与b的夹角为arccos66,且|a|=2,|(1)求a,b为邻边的平行四边形的面积S;(2)求m,n的夹角22(10分)已知函数.(1)判断的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设,试讨论的零点个数情况.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先根据条件求出,再由二项式定理及展开式通项公式,即可得答案.【详解】由已知可得:,所以,则展开式的中间项为,即展开式的中间项的系数为1120.故选:
8、C【点睛】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力2、D【解析】分别在后,上,左三个平面得到该四边形的投影,求其面积和即可【详解】依题意,设四边形D1FBE的四个顶点在后面,上面,左面的投影点分别为D,F,B,E,则四边形D1FBE在上面,后面,左面的投影分别如上图所以在后面的投影的面积为S后=11=1,在上面的投影面积S上=DE1=DE1=DE,在左面的投影面积S左=BE1=CE1=CE,所以四边形D1FBE所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和S=S后+S上+S左=1+DE+CE=
9、1+CD=1故选D【点睛】本题考查了正方体中四边形的投影问题,考查空间想象能力属于中档题3、B【解析】通过展开式中项的系数为列方程,解方程求得的值.利用几何法求得定积分的值.【详解】展开式中项为即,条件知,则;于是被积函数图像,围成的图形是以为圆心,以2为半径的圆的,利用定积分的几何意义可得,选B.【点睛】本小题主要考查二项式展开式,考查几何法计算定积分,属于中档题.4、A【解析】由于三段论的大前提“对数函数是增函数”是错误的,所以选A.【详解】由于三段论的大前提“对数函数是增函数”是错误的,只有当a1时,对数函数才是增函数,故答案为:A【点睛】(1)本题主要考查三段论,意在考查学生对该知识的
10、掌握水平和分析推理能力.(2)一个三段论,只有大前提正确,小前提正确和推理形式正确,结论才是正确的.5、D【解析】先利用等差数列的求和公式得出S2019=2019a1+a20192=6057【详解】由等差数列的前n项和公式可得S2019=2019由等差数列的基本性质可得a261所以,1a2+4a因此,1a2+4【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。6、B【解析】通过构造函数,由导函数,结合,可知函数是上的增函数,得到,即可得到答案.【详解】构造函数,则,故函数是上的增函
11、数,所以,即,则.故选B.【点睛】本题的难点在于构造函数,由,构造是本题的关键,学生在学习中要多积累这样的方法.7、B【解析】作出图形,取的中点,连接、,证明四边形为平行四边形,计算出的三边边长,然后利用余弦定理计算出,即可得出异面直线与所成角的大小.【详解】如下图所示:取的中点,连接、,、分别为、的中点,则,且,在正方体中,为的中点,且,则,所以,四边形为平行四边形,则异面直线与所成的角为或其补角.在中,.由余弦定理得.因此,异面直线与所成角的大小为.故选B.【点睛】本题考查异面直线所成角的计算,一般利用定义法或空间向量法计算,考查计算能力,属于中等题.8、B【解析】试题分析:由题意,这是几
12、何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.9、A【解析】由题意,这个问题的关键是四人中有两人说真话,另外两人说了假话,通过这一突破口,进行分析,推理即可得到结论.【详解】在甲、乙、丙、丁四人的供词中,可以得出乙、丁两人的观点是一致的,因此乙丁两人的供词应该是同真同假(即都是真话或都是假话,不会出现一真一假的情况);假设乙、丁两人所得都是真话,那么甲、丙两人说的是假话,由乙说真话可推出丙是犯罪
13、的结论;由甲说假话,推出乙、丙、丁三人不是犯罪的结论;显然这两人是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词可以断定乙是犯罪的,乙、丙、丁中有一人是犯罪的,由丁说假话,丙说真话推出乙是犯罪的,综上可得乙是犯罪的,故选A.【点睛】本题主要考查了推理问题的实际应用,其中解答中结合题意,进行分析,找出解决问题的突破口,然后进行推理是解答的关键,着重考查了推理与论证能力.10、D【解析】根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为故
14、选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.11、C【解析】试题分析:设出等差数列的首项和公差,由a3=6,S3=11,联立可求公差d解:设等差数列an的首项为a1,公差为d,由a3=6,S3=11,得:解得:a1=1,d=1故选C考点:等差数列的前n项和12、B【解析】分析:根据题意,由函数f(x)的解析式分析可得函数f(x)的图象关于直线x=1对称,当x1时,对函数f(x)求导分析可得函数f(x)在1,+)上为减函数,则原不等式变形可得f(|x|)f(|2x3|),结合单调性可得|x|2x3|,解可得x的取值范围,即可得答案详解:根据题意,f(x)=x2+2
15、x2(ex1+e1x)=(x1)22(ex1+)+1,分析可得:y=(x1)2+1与函数y=2(ex1+e1x)都关于直线x=1对称,则函数f(x)=x2+2x2(ex1+e1x)的图象关于直线x=1对称,f(x)=x2+2x2(ex1+e1x),当x1时,f(x)=2x+2(ex1)=2(x+1+ex1),又由x1,则有ex1,即ex10,则有f(x)0,即函数f(x)在1,+)上为减函数,f(x+1)f(2x2)f(|x+11|)f(|2x21|)f(|x|)f(|2x3|)|x|2x3|,变形可得:x24x+30,解可得1x3,即不等式的解集为(1,3);故选:B点睛:处理抽象不等式问题
16、,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则 ,若函数是奇函数,则二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为,可得,根据根据关于的不等式的解集为,可得,分别讨论和不等式解情况,即可求得答案.【详解】根据关于的不等式的解集为可得解得:,故不合符题意,舍去.综上所述,.故答案为:.【点睛】本题主要考查了根本绝对值不等式解情况求参数值,解题关键是掌握将绝对值不等式解法,考查了分析能力和计算能力,属于基础题.14、【解析】分析:设10件产品中存在n件次品,根据题意列出方程求出n
17、的值,再计算次品率.详解:设10件产品中存在n件次品,从中抽取2件,其次品数为.由得,化简得,解得或,又该产品的次品率不超过40%,应取,这10件产品的次品率为.故答案为:20%.点睛:本题考查了古典概型的概率计算问题,也考查了离散型随机变量的分布列问题,是基础题.15、60【解析】首先写出二项展开式的通项公式,并求指定项的值,代入求常数项.【详解】展开式的通项公式是,当时, .故答案为:60【点睛】本题考查二项展开式的指定项,意在考查公式的熟练掌握,属于基础题型.16、【解析】圆C的方程为x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又
18、直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,只需圆C:(x-4)2+y2=4与直线y=kx-2有公共点即可设圆心C(4,0)到直线y=kx-2的距离为d,即3k24k,0k,故可知参数k的最大值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1) ;(2);(3).【解析】(1)“甲乙丙丁四人所付的费用之和为25元”, 即4人均不超过30分钟。(2)即丁付20元,甲乙丙三人中有且只有一人付10 ,其余2人付5,分3种情况。用相互独立事件同时发生概率公式与互斥事件的和事件概率公式可求解。(3)根据分类可知随机变量的所有取值为25,30,
19、35,40,45,50,求出概率及期望。【详解】(1)记“甲乙丙丁四人所付的费用之和为25元”为事件,即4人均不超过30分钟,则 .答:求甲乙丙丁四人所付的费用之和为25元的概率是 (2)由题意,甲乙丙丁在分钟以上且不超过分钟还车的概率分别为,设“甲乙丙三人所付费用之和等于丁所付费用”为事件,则 答:甲乙丙三人所付的费用之和等于丁所付的费用的概率是 (3)若“4人均不超过30分钟”此时随机变量的值为25,即为事件,由(1)所以.记“4人中仅有一人超过30分钟”为事件,事件又分成两种情况“超过30分钟的这一人是甲乙丙中的一个”和“超过30分钟的这一人是丁”,分别将上述两种情况记为事件和.i.事件
20、对应的的值为30,此时;ii.事件对应的的值为35,此时.记“4人中仅有两人超过30分钟”为事件,事件又分成两种情况“超过30分钟的两人是甲乙丙中的两个”和“超过30分钟的两人是甲乙丙中的一个和丁”,分别将上述两种情况记为事件和.i.事件对应的的值为35,此时;i.事件对应的的值为40,此时记“4人中仅有三人超过30分钟”为事件,事件又分成两种情况“超过30分钟的三人是甲乙丙”和“超过30分钟的三人是甲乙丙中的两个和丁”,分别将上述两种情况记为事件和.i.事件对应的的值为40,此时;i.事件对应的的值为45,此时 .记“4人均超过30分钟”为事件,则随机变量的值为50,此时 ;综上:随机变量的
21、所有取值为25,30,35,40,45,50,且; ;所以甲乙丙丁四人所付费用之和的分别为253035404550所以 .答:甲乙丙丁四人所付费用之和的数学期望为.【点睛】本题综合考查相互独立事件同时发生概率公式与互斥事件的和事件概率公式,同时考查离散型随机变量的分布列及其期望,需要学生分类清晰,逻辑有条理,运算准确。18、 (1);(2)证明见解析.【解析】试题分析:(1)设Q(x,y),则(x1)2x2y2,又y24x,解得Q;(2)设点(1,t)的直线方程为ytk(x1),联立y24x,则0,得k2kt10,则切点分别为A,B,所以A,B,F三点共线,AB过点F(1,0)。试题解析:(1
22、)设Q(x,y),则(x1)2x2y2,即y22x1,由解得Q.(2)设过点(1,t)的直线方程为ytk(x1)(k0),代入y24x,得ky24y4t4k0,由0,得k2kt10,特别地,当t0时,k1,切点为A(1,2),B(1,2),显然AB过定点F(1,0).一般地方程k2kt10有两个根,k1k2t,k1k21,两切点分别为A,B,又20,与共线,又与有共同的起点F,A,B,F三点共线,AB过点F(1,0),综上,直线AB过定点F(1,0).点睛:切点弦问题,本题中通过点P设切线,求得斜率k,再求出切点A,B,通过证明与共线,AB过点F(1,0)。一般的,我们还可以通过设切点,写出切
23、线方程,直接由交点P,结合两点确定一条直线,写出切点弦直线方程,进而得到定点。19、(1);(2)甲大棚万元,乙大棚万元时,总收益最大, 且最大收益为万元.【解析】试题分析:(1)当甲大棚投入万元,则乙大棚投入万元,此时直接计算即可;(2)列出总收益的函数式得,令,换元将函数转换为关于的二次函数,由二次函数知识可求其最大值及相应的值.试题解析: (1)甲大棚投入50万元,则乙大棚投入150万元,(2),依题得,即,故.令,则,当时,即时,甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元.考点:1.函数建模;2.二次函数.20、(1)函数的单调递减区间是,单调递增区间是(2)的最小值为1【解析】(1)求导函数后,注意对分式分子实行有理化,注意利用平方差公式,然后分析单调性;(2)由可得不等式,通过构造函数证明函数的最值满足相应条件即可;分析函数时,注意极值点唯一的情况,其中导函数等于零的式子要注意代入化简.【详解】解:(1)已知,函数的定义域为,因此在区间上,在区间上,所以函数的单调递减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开放获取科技期刊管理新动向
- 期货公司税务筹划指南
- 电子商务外协产品管理办法
- 家具制造业质量异常管理策略
- 桌球室墙面施工协议
- 别墅装修隔层施工合同
- 军工级元器件选用管理办法
- 广告宣传居间人管理规则
- 电力设施安装简易合同
- 建筑改造安全施工合同范本
- 厂房租赁合同范本版(18篇)
- 能源中国学习通超星期末考试答案章节答案2024年
- 2024广东省云浮市郁南县财政局工程造价类专业人员招聘4人高频难、易错点500题模拟试题附带答案详解
- 人工智能时代高等院校教师信息素养提升研究
- 商家联盟合作方案
- 广东省广州市2021年中考英语真题(含答案)
- 《应用统计学》(第4版)-自测试卷及答案A卷
- 公司法课件(新员工)
- GB/T 10082-2024轨道车重型轨道车
- 山东省青岛市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 考古与人类学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论