浙江省普通高等学校2021-2022学年数学高二第二学期期末学业质量监测模拟试题含解析_第1页
浙江省普通高等学校2021-2022学年数学高二第二学期期末学业质量监测模拟试题含解析_第2页
浙江省普通高等学校2021-2022学年数学高二第二学期期末学业质量监测模拟试题含解析_第3页
浙江省普通高等学校2021-2022学年数学高二第二学期期末学业质量监测模拟试题含解析_第4页
浙江省普通高等学校2021-2022学年数学高二第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则( )ABCD2已知圆C:(x-a)2+(y-b)2=1,平面区域:x+y-60 x-y+40y0A-,

2、-7375,+3已知将函数的图象向左平移个单位长度后得到的图象,则在上的值域为( )ABCD4如图,在三棱锥中,侧面底面BCD,直线AC与底面BCD所成角的大小为ABCD5已知数列为单调递增的等差数列,为前项和,且满足,、成等比数列,则( )A55B65C70D756如图所示是的图象的一段,它的一个解析式是( )ABCD7已知定义在上的奇函数满足,当时,则( )A2019B1C0D-18若是的增函数,则的取值范围是( )ABCD9在极坐标系中,与关于极轴对称的点是( )ABCD10通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由得参照附表,得到的正确结论是( ).爱好不

3、爱好合计男生20525女生101525合计302050附表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A有99.5以上的把握认为“爱好该项运动与性别有关”B有99.5以上的把握认为“爱好该项运动与性别无关”C在犯错误的概率不超过0.1的前提下,认为“爱好该项运动与性别有关”D在犯错误的概率不超过0.1的前提下,认为“爱好该项运动与性别无关”11如图,设D是边长为l的正方形区域,E是D内函数与所构成(阴影部分)的区域,在D中任取一点,则该点在E中的概率是( )A B C D12且,可进行如下“分解”:若

4、的“分解”中有一个数是2019,则( )A44B45C46D47二、填空题:本题共4小题,每小题5分,共20分。13已知函数的导函数为,且满足,则_14已知直线的一个法向量,则直线的倾斜角是_(结果用反三角函数表示);15如图,在梯形中,如果,则_.16已知随机变量X的分布列为P(Xk)(k1,2,3,4),则a等于_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,为圆锥的高,B、C为圆锥底面圆周上两个点, ,是的中点 (1)求该圆锥的全面积;(2)求异面直线与所成角的大小(结果用反三角函数值表示)18(12分)已知数列的前项和为,且满足,(1)求,的值,并猜

5、想数列的通项公式并用数学归纳法证明;(2)令,求数列的前项和19(12分)2020年开始,国家逐步推行全新的高考制度新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科

6、目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望选择“物理”选择“地理”总计男生10女生25总计附参考公式及数据:,其中.0.050.013.8416.63520(12分)将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为,第二

7、次出的点数为,且已知关于、的方程组.(1)求此方程组有解的概率;(2)若记此方程组的解为,求且的概率.21(12分)已知函数(且),.(1)函数的图象恒过定点,求点坐标;(2)若函数的图象过点,证明:方程在上有唯一解.22(10分)已知等差数列不是常数列,其前四项和为10,且、成等比数列.(1)求通项公式;(2)设,求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由指数函数及对数函数的性质比较大小,即可得出结论.【详解】故选:A.【点睛】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函

8、数和对数函数的性质的合理运用.2、A【解析】分析:画出可行域,由可行域结合圆C与x轴相切,得到b=1且-3a5,从而可得结果.详解: 画出可行域如图,由圆的标准方程可得圆心C(a,b),半径为1因为圆C与x轴相切,所以b=1,直线y=1分别与直线x+y-6=0与x-y+4=0交于点B5,1所以-3a5,圆心C(a,b)与点(2,8-3a2时,k72a5时k-所以圆心C(a,b)与点(2,8)连线斜率的取值范围是-点睛:本题主要考查可行域、含参数目标函数最优解,属于中档题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索

9、问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.3、B【解析】解析:因,故,因,故,则,所以,应选答案B4、A【解析】取BD中点,可证,为直线AC与底面BCD所成角。【详解】取BD中点,由,又侧面底面BCD,所以。所以为直线AC与底面BCD所成角。,所以。选A.【点睛】本题考查线面角,用几何法求线面角要一作、二证、三求,要有线面垂直才有线面角。5、A【解析】设公差为d,解出公差,利用等差数列求和公式即可得解.【详解】由题:数列为单调递增的等差数列,为前项和,且满足,、成等比数列,设公差为d,解得,所以.故

10、选:A【点睛】此题考查等差数列基本量的计算,根据等比中项的关系求解公差,利用求和公式求前十项之和.6、D【解析】根据图象的最高点和最低点求出A,根据周期T求,图象过(),代入求,即可求函数f(x)的解析式;【详解】由图象的最高点,最低点,可得A,周期T,图象过(),可得:, 则解析式为ysin(2)故选D【点睛】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键要求熟练掌握函数图象之间的变化关系7、C【解析】根据题意推导出函数的对称性和周期性,可得出该函数的周期为,于是得出可得出答案【详解】函数是上的奇函数,则,所以,函数的周期为,且,故选C【点睛】本题考查抽象函数求值

11、问题,求值要结合题中的基本性质和相应的等式进行推导出其他性质,对于自变量较大的函数值的求解,需要利用函数的周期性进行求解,考查逻辑推理能力与计算能力,属于中等题8、A【解析】利用函数是上的增函数,保证每支都是增函数,还要使得两支函数在分界点处的函数值大小,即,然后列不等式可解出实数的取值范围【详解】由于函数是的增函数,则函数在上是增函数,所以,即;且有,即,得,因此,实数的取值范围是,故选A.【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点:(1)确保每支函数的单调性和原函数的单调性一致;(2)结合图象确保各支函数在分界点处函数值的大小关系9、B【解析】直接根据

12、极轴对称性质得到答案.【详解】在极坐标系中,与关于极轴对称的点是.故选:.【点睛】本题考查了极轴的对称问题,属于简单题.10、A【解析】对照表格,看在中哪两个数之间,用较小的那个数据说明结论【详解】由8.3337.879,参照附表可得:有99.5%以上的把握认为“爱好该项运动与性别有关”,故选:A【点睛】本题考查独立性检验,属于基础题11、A【解析】试题分析:正方形面积为1,阴影部分的面积为,所以由几何概型概率的计算公式得,点在E中的概率是,选A.考点:定积分的应用,几何概型.12、B【解析】探寻规律,利用等差数列求和进行判断【详解】由题意得底数是的数分裂成个奇数,底数是的数分裂成个奇数,底数

13、是的数分裂成个奇数,则底数是数分裂成个奇数,则共有个奇数,是从开始的第个奇数,第个奇数是底数为的数的立方分裂的奇数的其中一个,即,故选【点睛】本题考查了数字的变化,找出其中的规律,运用等差数列求出奇数的个数,然后进行匹配,最终还是考查了数列的相关知识。二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】分析:先求导数,解得,代入解得.详解:因为,所以所以因此,点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.14、【解析】由法向量与方向向量垂直,求出方向向量,得直线的斜率,从而得倾斜角。【详解】直线的一个法向量,则直线的一个方向向量为,其斜率为

14、,倾斜角为。故答案为:。【点睛】本题考查求直线的倾斜角,由方向向量与法向量的垂直关系可求得直线斜率,从而求得倾斜角,注意倾斜角范围是,而反正切函数值域是。15、【解析】试题分析:因为,所以考点:向量数量积16、5【解析】试题分析:随机变量的取值有1、2、3、4,分布列为:1234由概率的基本性质知:考点:1、离散型随机变量的分布列三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】分析:(1)根据, ,可求得圆锥的母线长以及圆锥的底面半径,利用圆锥侧面积公式可得结果;(2)过作交于,连则为异面直线与所成角,求出 ,在直角三角形中,,从而可得结果.详解:(1)

15、中,即圆锥底面半径为2圆锥的侧面积故圆锥的全面积 (2)过作交于,连则为异面直线与所成角 在中, 是的中点 是的中点 在中,即异面直线与所成角的大小为点睛:求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.18、(1),见解析;(2)【解析】(1)计算,猜想可得,然后依据数学归纳法的证明步骤,可得结果.(2)根据(1)得,然后利用裂项相消法,可得结果.【详解】(1)当时,即,解得当时,即,解得 当时,即,解得

16、猜想,下面用数学归纳法证明:当时,猜想成立假设当时, 猜想成立, 即,则当时,所以猜想成立综上所述, 对于任意,均成立(2)由(1)得则数列的前项和【点睛】本题考查数学归纳法证明方法以及裂项相消法求和,熟练掌握数学归纳法的步骤,同时对常用的求和方法要熟悉,属基础题.19、(1)列联表见解析;有的把握认为选择科目与性别有关(2)分布列见解析;【解析】(1)根据分层抽样,求得抽到男生、女生的人数,得到的列联表,求得的值,即可得到结论;(2)求得这4名女生中选择地理的人数可为,求得相应的概率,得到分布列,利用期望的公式计算,即可求解.【详解】(1)由题意,抽取到男生人数为,女生人数为,所以列联表为:

17、选择“物理”选择“地理”总计男生451055女生252045总计7030100所以,所以有的把握认为选择科目与性别有关(2)从45名女生中分层抽样抽9名女生,所以这9名女生中有5人选择物理,4人选择地理,9名女生中再选择4名女生,则这4名女生中选择地理的人数可为 设事件发生概率为,则,所以的分布列为:01234期望【点睛】本题主要考查了独立性检验及其应用,以及离散型随机变量的分布列与期望的计算,其中解答中认真审题,得出随机变量的取值,求得相应的概率,得出分布列,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.20、(1);(2).【解析】(1)先根据方程组有解得关系,再确定取法种数,最后根据古典概型概率公式求结果;(2)先求方程组解,再根据解的情况得关系,进而确定取法种数,最后根据古典概型概率公式求结果.【详解】(1)因为方程组有解,所以而有这三种情况,所以所求概率为;(2)因为且,所以因此即有种情况,所以所求概率为;【点睛】本题考查古典概型概率以及二元一次方程组的解,考查综合分析求解能力,属中档题.21、 (1);(2)证明见解析.【解析】试题分析:(1)结合对数函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论